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a b s t r a c t

The productivity of milling processes is limited by the occurrence of chatter vibrations. The correlation of
the maximum stable cutting depth and the spindle speed can be shown in a stability lobe diagram (SLD).
The stability is different for different width of cut and can change with the axis positions. Today it is
already a great effort to estimate the SLD only for one position. Many experiments are necessary to
measure the SLD or derive a detailed mathematical model to calculate the SLD. Moreover not only the
cutting depth, but also the cutting width should be represented in the SLD. This paper presents a new
approach to assess the process stability based on measured acceleration signals. The multidimensional
stability lobe diagram (MSLD) are derived during the production using two new continuously learning
algorithms. In this paper the application of a continuous learning support vector machine and a con-
tinuous neural network is shown. The support vector machine and the neural network are extended to
make them capable for continuous learning and time-variant systems. A new trust criterion is in-
troduced, which gives information about the prediction quality of the output for the selected input re-
gion. The learned MSLDs are evaluated against analytically calculated MSLDs and the learning algorithms
can reproduce the analytical results very well.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The increase of the productivity and performance is one of the
most important objectives in today's machining industries. One of
the limiting factors of productivity is chatter. The chatter vibra-
tions can cause bad surface quality or even damage the work piece,
the tool, or the machine tool itself. The appearance of chatter vi-
brations depends on different process parameters like the spindle
speed, the machine dynamics, the tool, the material and the depth
of cut [1]. To reach maximum productivity the width and depth of
cut should be chosen close to the stability limit. Thus it is neces-
sary to provide the information about the stability limit for each
tool-material-combination to the machine user. The flexible
structure of the machine tool, the interaction between the surface
left by the last tooth and the current tooth of the cutting tool leads
to self-excited vibrations. The dynamic of the machine is the key
factor for the stability. Especially for robots the dynamic is pose-
dependent [2] and the process stability and chatter effects are a
problem for milling robots [3].

The chatter effect can be described as a time-delay system,
which time delay is given by the rotation speed of the spindle [4].

Since the late 1950s there have been several studies investigating
the effect of regenerative chatter [5,6]. As the chatter is a feedback
with time delay the spindle speed, causing the delay, and the
depth of cut, causing the excitation, are the main parameters in-
fluencing the stability of the system. All pairs of spindle speed and
depth of cut can be classified as stable or unstable. This is gra-
phically represented in a stability lobe diagram (SLD) where the
border between stable and unstable conditions is drawn [7].

There exist several ways to generate the SLDs. Experimentally
they can be extracted by doing cuts for each spindle speed with
increasing depth of cut. Based on the measured results for each
spindle speed the maximum stable depth of cut can be estimated
[8]. A similar approach is to cut with constant depth of cut but
increasing spindle speed. By analyzing the vibration signal for each
depth of cut the stable spindle speeds can be located [9]. Based on
a mathematic model of the milling process the SLDs can also be
simulated or calculated. For example Zatrain [10] analyzed the
results in time and frequency domain. The semi-discretization
method [11] and the full discretization method [12] are other
possibilities to analyze the stability of time delayed systems.

Based on the SLD, the spindle speed with the maximum depth
of cut can be selected. Budak [13] showed, that the critical depth of
cut depends on the width of cut. The SLDs are changing for dif-
ferent widths of cut. To reach maximum material removal rate the
SLD has to be extended to find optimal pairs of width and depth of
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cut [13]. Thus the two dimensional SLDs are only suitable to select
the optimal depth of cut for one width of cut.

The main drawback of the methods to estimate the SLD men-
tioned above is, that there are several measurements necessary to
extract the SLD itself or to get the mathematical model that can be
used to calculate the SLD analytically. Moreover it is known, that
the dynamic behavior of machine tools is changing over time [14]
and with the position. Thus a SLD calculated once is only valid at
that position and only for that time and not for the whole life-time
of the machine tool. To analyze the whole working envelope, the
measurements and calculations have to be repeated on different
positions and repeated periodically to measures changes over
time.

As the approach in this paper is based on continuous learning
there are no experiments necessary. The application of a con-
tinuous support vector machine (SVM) and a continuous artificial
neural network (ANN) enables the learning of the multi-
dimensional stability lobe diagram (MSLD) during productive
milling, taking into account the spindle speed, the cutting depth
and the cutting width. The support vector machine (SVM) is a
learning method based on mathematical optimization [15]. It is
suitable for classification as well as regression analysis. According
to the analysis task it is called Support Vector Regression (SVR) or
Support Vector Classification (SVC). Support vector machines are
suitable to extract MSLD from a set of measured training data [16],
but in that approach the training data are generated with a special
experiment and no continuous learning is performed The first
neural network structures emerged the early 1940s from the
neuro-informatics research of McCulloch and Pitts who wanted to
figure out the functionality and the learning behavior of cerebral
structures [17]. Trying to simulate neural structures of living
creatures Neural Networks are made up of neurons (neurocytes)
and axons (connections). The network information is represented
by axon connections and signal weightings, which are adapted in a
highly parallel learning process. The new information processing
concept and the fault-tolerant network structure attracted many
researchers in the following years up to today: Rosenblatt [18]
extended the McCulloch-Pitts-network-structure, Hebb [19] pub-
lished a learning criterion which was further developed by Rum-
melhart et. al. [20] and is known now as Backpropagation method,
and Hornik [21] showed that two-layered neural feedforward
structures with sigmoidal activation function is able to approx-
imate every compact and continuous function f and its derivative
f ′ arbitrary well.

The continuous learning guarantees that the MSLD is always
up-to-date, even if the dynamic machine behavior is changing.
Within an additional parameter optimization loop the MSLD can
be used to optimize the parameters for each part in serial or single
production.

In the next section of this article the milling dynamics and the
new process assessment are explained. The continuous learning
algorithms are derived in section three and assessed and verified
with simulation data in section four. The last section gives a con-
clusion of the study and an outlook on future research.

2. Process model and assessment

2.1. Mathematic model of milling dynamics

The chatter effect, on which this paper is focused, can be de-
scribed as a self-excited vibration. The interaction of the wavy
surface of the last cutting edge and the current cutting edge is
leading to vibrations. The milling dynamics can be modeled as two
spring-and-damper-systems with time delay given in (1) to (10)
[22] and the parameters mass m, stiffness k and damping c. Fig. 1

shows the model of the dynamics of the milling process, which is
valid for lateral milling, without end mill contact. This model is
sufficient for stability analysis and the evaluation of the learning
algorithms, even it cannot represent pose dependenc y and tool
wear, which also has an influence on the process stability [23].

The differential equations of the movement of the tool are gi-
ven in (1) and (2).

m x c x k x F x t x t T, 1x x x¨ + ̇ + = ( ( ) ( − )) ( )

m y c y k y F y t y t T, 2y y y¨ + ̇ + = ( ( ) ( − )) ( )

The time delay T is given in (3) and depends on the spindle
speed S and the number of teeth z of the tool.

T
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The process force depends on the radial immersion position
t St2ϕ π( ) = of the tooth, the axial depth of cut a and the chip

thickness h(Φ). With the tangential and radial force coefficients
(Kt, Kr) the force can be divided into a tangential and a radial force
(Ft,Fr) as shown in (4) to (7). It is assumed that there is maximum
one tooth cutting at a time. For a cutter with 3 cutting edges and a
maximum depth of cut b¼1, which is equivalent to the radius, this
is ensured all the time.
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The chip thickness h(Φ) can be calculated by using the feed per
tooth fZ, x x t x t TΔ = ( ) − ( − ) and y y t y t TΔ = ( ) − ( − ) as given in
Eq. (8).

Fig. 1. Model of Milling dynamics.
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