
JID:BDR AID:73 /REV [m5G; v1.221; Prn:24/08/2017; 12:07] P.1 (1-17)

Big Data Research ••• (••••) •••–•••

Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42 108

43 109

44 110

45 111

46 112

47 113

48 114

49 115

50 116

51 117

52 118

53 119

54 120

55 121

56 122

57 123

58 124

59 125

60 126

61 127

62 128

63 129

64 130

65 131

66 132

Frequent Itemsets Mining for Big Data: A Comparative Analysis

Daniele Apiletti, Elena Baralis, Tania Cerquitelli, Paolo Garza, Fabio Pulvirenti ∗, 
Luca Venturini

Politecnico di Torino, Dipartimento Automatica e Informatica, Torino, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 March 2016
Received in revised form 29 May 2017
Accepted 4 June 2017
Available online xxxx

Keywords:
Big Data
Frequent itemset mining
Hadoop and Spark platforms

Itemset mining is a well-known exploratory data mining technique used to discover interesting 
correlations hidden in a data collection. Since it supports different targeted analyses, it is profitably 
exploited in a wide range of different domains, ranging from NETWORK traffic data to medical records. 
With the increasing amount of generated data, different scalable algorithms have been developed, 
exploiting the advantages of distributed computing frameworks, such as Apache Hadoop and Spark.
This paper reviews Hadoop- and Spark-based scalable algorithms addressing the frequent itemset 
mining problem in the Big Data domain through both theoretical and experimental comparative 
analyses. Since the itemset mining task is computationally expensive, its distribution and parallelization 
strategies heavily affect memory usage, load balancing, and communication costs. A detailed discussion 
of the algorithmic choices of the distributed methods for frequent itemset mining is followed by 
an experimental analysis comparing the performance of state-of-the-art distributed implementations 
on both synthetic and real datasets. The strengths and weaknesses of the algorithms are thoroughly 
discussed with respect to the dataset features (e.g., data distribution, average transaction length, number 
of records), and specific parameter settings. Finally, based on theoretical and experimental analyses, open 
research directions for the parallelization of the itemset mining problem are presented.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, the increasing availability of huge amounts of 
data has changed the importance of data analytic systems for Big 
Data and the interest towards data mining, an important set of 
techniques useful to extract effective and usable knowledge from 
data. On the one hand, the Big Data analytics scenario is very chal-
lenging for researchers. Indeed, the application of traditional data 
mining techniques to big volumes of data is not straightforward 
and some of the most popular techniques had to be redesigned 
from scratch to fit the new environment. On the other hand, com-
panies are interested in the strategic benefits that Big Data could 
deliver. Data mining, together with machine learning [1], is the 
main research area on which Big Data analytics rely. It includes 
(i) clustering algorithms to discover hidden structures in unla-
beled data [2], (ii) frequent itemsets mining and association rule 
mining techniques to discover interesting correlations and depen-

* Corresponding author.
E-mail addresses: daniele.apiletti@polito.it (D. Apiletti), elena.baralis@polito.it

(E. Baralis), tania.cerquitelli@polito.it (T. Cerquitelli), paolo.garza@polito.it (P. Garza), 
fabio.pulvirenti@polito.it (F. Pulvirenti), luca.venturini@polito.it (L. Venturini).

dencies [3], and (iii) supervised algorithms to infer models from 
labeled datasets and use them to predict the label of new data [4].

Several traditional centralized mining algorithms have been 
proposed. They are very efficient when the datasets can be com-
pletely loaded in main memory. However, they cannot cope with 
Big Data, because they are not designed for a parallel and dis-
tributed environment. The recent shift towards horizontal scalabil-
ity has highlighted the need of distributed/parallelized data min-
ing algorithms able to exploit the available hardware resources 
and distributed Big Data frameworks (e.g., Apache Hadoop [5], 
Apache Spark [6]). In this survey, we focus on distributed/par-
allel itemset mining algorithms in the Big Data context because 
they represent exploratory approaches widely used to discover fre-
quent co-occurrences from the data. These algorithms have been 
widely exploited in different application domains (e.g., network 
traffic data [7], healthcare [8], biological data [9], energy data [10], 
images [11], open linked data [12], document and data summa-
rization [13–15]).

The parallelization of the frequent itemset mining problem in 
a distributed environment by means of the MapReduce program-
ming paradigm and a Big Data framework is not an easy task. 
The main challenge is devising a smart partitioning of the prob-
lem in independent subproblems, each one based on a subset of 
the data, to exploit the computation power of a cluster of servers 

http://dx.doi.org/10.1016/j.bdr.2017.06.006
2214-5796/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.bdr.2017.06.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
mailto:daniele.apiletti@polito.it
mailto:elena.baralis@polito.it
mailto:tania.cerquitelli@polito.it
mailto:paolo.garza@polito.it
mailto:fabio.pulvirenti@polito.it
mailto:luca.venturini@polito.it
http://dx.doi.org/10.1016/j.bdr.2017.06.006


JID:BDR AID:73 /REV [m5G; v1.221; Prn:24/08/2017; 12:07] P.2 (1-17)

2 D. Apiletti et al. / Big Data Research ••• (••••) •••–•••

1 67

2 68

3 69

4 70

5 71

6 72

7 73

8 74

9 75

10 76

11 77

12 78

13 79

14 80

15 81

16 82

17 83

18 84

19 85

20 86

21 87

22 88

23 89

24 90

25 91

26 92

27 93

28 94

29 95

30 96

31 97

32 98

33 99

34 100

35 101

36 102

37 103

38 104

39 105

40 106

41 107

42 108

43 109

44 110

45 111

46 112

47 113

48 114

49 115

50 116

51 117

52 118

53 119

54 120

55 121

56 122

57 123

58 124

59 125

60 126

61 127

62 128

63 129

64 130

65 131

66 132

in parallel. In the following, we will describe how this problem 
has been addressed so far and which are pros and cons of the 
current MapReduce- and RDD-based parallel algorithms by taking 
into consideration load balancing and communication costs, which 
are two very important issues in the distributed domain. They are 
strictly related to the adopted parallelization strategy and usually 
represent the main bottlenecks of parallel algorithms.

The contributions of this survey are the followings.

• A theoretical analysis of the algorithmic choices that have been 
proposed to address the itemset mining problem in the Big 
Data context by means of MapReduce, with the analysis of 
their expected impact on main memory usage, load balancing, 
and communication costs.

• An extensive evaluation campaign to assess the reliability of 
our expectations. Precisely, we ran more than 300 experiments 
on 14 synthetic datasets and 2 real datasets to evaluate the 
execution time, load balancing, and communication costs of 
five state-of-the-art parallel itemset mining implementations.

• The identification of strengths and weaknesses of the algo-
rithms with respect to the input dataset features (e.g., data 
distribution, average transaction length, number of records), 
and specific parameter settings.

• The discussion of promising open research directions for the 
parallelization of the itemset mining problem.

This paper is organized as follow. Section 2 briefly introduces 
the Hadoop and Spark frameworks, while Section 3 introduces the 
background about the itemset mining problem, providing the main 
definitions and a brief description of the state-of-the-art central-
ized itemset mining algorithms. Section 4 describes the algorithmic 
strategies adopted so far to partition and parallelize the frequent 
itemset mining problem by means of the MapReduce paradigm, 
while Section 5 describes the state-of-the-art distributed algo-
rithms and their implementations. In Section 6 we benchmark 
the selected algorithms with a large set of experiments on both 
real and synthetic datasets. Section 7 summarizes the concrete 
and practical lessons learned from our evaluation analysis, while 
Section 8 discusses the open issues raised by the experimental 
validation of the theoretical analysis, highlighting some possible 
research directions to support a more effective and efficient data 
mining process on Big Data collections.

2. Apache Hadoop and Spark

The availability of increasing amounts of data has highlighted 
the need of distributed algorithms able to scale horizontally. 
To support the design and implementation of these algorithms, 
the MapReduce [16] programming paradigm and the Apache 
Hadoop [5] distributed platform have been commonly used in the 
last decade. In the last couple of years, instead, Apache Spark [6]
has become the favorite distributed platform for large data an-
alytics, outperforming Hadoop thanks to its distributed dataset 
abstraction.

The success of Hadoop and Spark is mainly due to their data 
locality paradigm. The basic idea consists in processing data in the 
same node storing it instead of sending large amounts of data on 
the network.

Hadoop and Spark support the MapReduce paradigm, a dis-
tributed programming model introduced by Google [16]. A MapRe-
duce application consists of two main phases, named map and 
reduce. The map phase applies a map function on the input data 
and, after processing them, it emits a set of key-value pairs. To par-
allelize the execution of the map phase, each node of the cluster 
applies the map function in isolation on a disjoint subset of the in-
put data. Then, the map results are exchanged among the cluster 

nodes and the reduce phase is run. Specifically, the reduce phase 
considers one unique key at a time and iterates through the val-
ues that are associated with that key to emit the final results. Also 
the reduce phase can be parallelized by assigning to each node a 
subset of keys.

MapReduce-based programs implemented on Hadoop do not 
fit well iterative processes because each iteration requires a new 
reading phase from disk. This feature is critical when dealing with 
huge datasets. This issue motivated the improvements introduced 
by Spark, which enables the nodes of the cluster to cache data and 
intermediate results in memory, instead of reloading them from 
the disk at each iteration. This goal is achieved through the intro-
duction of the Resilient Distributed Dataset (RDD) data structure, 
which is a read-only partitioned collection of records distributed 
across the nodes of the cluster. An RDD, when it is reused multi-
ple times, is cached in the main memory of the nodes to avoid the 
overhead given by multiple reads from disk.

2.1. Hadoop and Spark data mining and machine learning libraries

In recent years the success of Hadoop and Spark was supported 
by the introduction of open source data mining and machine learn-
ing libraries. Mahout [17] for Hadoop has been one of the most 
popular collection of Machine Learning algorithms, providing dis-
tributed implementations of well-known clustering, classification, 
and itemset mining algorithms. All the current implementations 
are based on MapReduce. MADlib [18], instead, provides a SQL 
toolkit of algorithms that run over Hadoop. Finally, MLLib [19] is 
the Machine Learning and data mining library developed on Spark. 
MLlib allows researchers to exploit Spark special features to imple-
ment all those applications that can benefit from them, e.g. faster 
iterative procedures.

2.2. Distributed data mining approaches based on MPI and GPUs

Hadoop and Spark are not the only frameworks supporting the 
parallelization of data mining algorithms and their distributed ex-
ecution. Specifically, the distributed execution of the data mining 
algorithms has been addressed also by using solutions based on 
Message Passing Interface (MPI) [20], one of the most adopted 
framework in academic environment, or more recent hardware 
components, such as GPUs.

For instance, the solutions proposed in [21–26] are MPI-based 
solutions for the itemset mining problem, whereas solutions like 
[27–29] take advantage of GPU-based commodity cluster. A com-
parative analysis of the GPU-based solutions is reported in [30].

The focus of this work is the comparison of the MapReduce-
based approaches. Hadoop and Spark have been widely adopted in 
the research environment [31–33]. The reasons are partly related 
to the easier data management and better fault tolerance [34,26]
but, above all, these frameworks allow the development of parallel 
algorithms by unexperienced users [31].

3. Frequent itemset mining

A frequent itemset represents frequently co-occurring items 
in a transactional dataset. More formally, let I be a set of 
items. A transactional dataset D consists of a set of transactions 
{t1, . . . , tn}. Each transaction ti ∈ D is a collection of items (i.e., 
ti ⊆ I) and is identified by a transaction identifier (tidi ). Fig. 1(a) 
reports an example of a transactional dataset with 4 transactions.

An itemset I is defined as a set of items (i.e., I ⊆ I) and is 
characterized by a support value, which is denoted by sup(I) and 
defined as the ratio between the number of transactions in D con-
taining I and the total number of transactions in D. In the example 
dataset in Fig. 1(a), for example, the support of the itemset {a, c ,d}



Download English Version:

https://daneshyari.com/en/article/4949078

Download Persian Version:

https://daneshyari.com/article/4949078

Daneshyari.com

https://daneshyari.com/en/article/4949078
https://daneshyari.com/article/4949078
https://daneshyari.com

