
JID:BDR AID:58 /FLA [m5G; v1.213; Prn:11/04/2017; 14:28] P.1 (1-8)

Big Data Research ••• (••••) •••–•••

Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

Using the Launcher for Executing High Throughput Workloads ✩

Lucas A. Wilson

Texas Advanced Computing Center, The University of Texas at Austin, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 May 2016
Received in revised form 24 February 2017
Accepted 3 April 2017
Available online xxxx

Keywords:
High throughput computing
Distributed computing
Parallel computing

For many scientific disciplines, the transition to using advanced cyberinfrastructure comes not out of
a desire to use the most advanced or most powerful resources available, but because their current
operational model is no longer sufficient to meet their computational needs. Many researchers begin
their computations on their desktop or local workstation, only to discover that the time required to
simulate their problem, analyze their instrument data, or score the multitude of entities that they want
to would require far more time than they have available.
Launcher is a simple utility which enables the execution of high throughput computing workloads on
managed HPC systems quickly and with as little effort as possible on the part of the user. Basic usage
of the Launcher is straightforward, but Launcher provides several more advanced capabilities including
use of Intel® Xeon Phi™ coprocessor cards and task binding support for multi-/many-core architectures.
We step through the processes of setting up a basic Launcher job, including creating a job file, setting
appropriate environment variables, and using scheduler integration. We also describe how to enable use
of the Intel® Xeon Phi™ coprocessor cards, take advantage of Launcher’s task binding system, and execute
many parallel (OpenMP/MPI) applications at once.

© 2017 Published by Elsevier Inc.

1. Introduction

For many scientific disciplines, the transition to using advanced
cyberinfrastructure comes not out of a desire to use the most ad-
vanced or most powerful resources available, but because their
current operational model is no longer sufficient to meet their
computational needs. Many researchers begin their computations
on their desktop or local workstation, only to discover that the
time required to simulate their problem, analyze their instrument
data, or score the multitude of entities that they want to would
require far more time than they have available.

At this point, when the task a researcher wishes to perform
may take many months or years to complete, they will likely turn
to one of the university, state, or national resources that are avail-
able to the scientific community. Many of these resources are
tailored for problems where solutions cannot be found without
performing frequent, high-speed data exchanges. These problems –
focused primarily in physics, chemistry, and engineering – require
frequent exchange of data in order to solve the underlying equa-
tions of state. For researchers with these types of problems the
path toward effectively using advanced cyberinfrastructure may be
difficult, but is well trodden.

✩ This article belongs to HPC Tutorial for Big Data.
E-mail address: lucaswilson@acm.org.

For researchers in other domains, the problem that they face
is not the scale of a single domain for which a global equation of
state must be solved, but the multitude of small data sets which
must be independently analyzed. In this computational model,
called throughput computing, processes do not require frequent data
exchange (they often require no data exchange), and can be prop-
erly executed in essentially any order.

2. Related approaches

While many efforts in the throughput-computing and workflow
management space have resulted in fairly heavy-weight software
solutions [8,11] intended to run either on dedicated hardware or
in cloud-based architectures, there are few lightweight software
solutions that can perform these low-communication workflows
on existing HPC systems, which comprise the vast majority of the
available computational cycles in large-scale installations.

In addition to workflow managers, emerging parallel scripting
languages such as Swift [16] seek to provide improved capability
for programmers to parallelize jobs across heterogeneous hardware
infrastructures. However, the layer of abstraction required to make
these current languages work across systems simultaneously cre-
ates an unnecessary level of complexity for users of homogeneous
HPC clusters.

Many resource managers provide a similar mechanism for these
problems called job arrays [4,17,15]. These job arrays allow the

http://dx.doi.org/10.1016/j.bdr.2017.04.001
2214-5796/© 2017 Published by Elsevier Inc.

http://dx.doi.org/10.1016/j.bdr.2017.04.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
mailto:lucaswilson@acm.org
http://dx.doi.org/10.1016/j.bdr.2017.04.001

JID:BDR AID:58 /FLA [m5G; v1.213; Prn:11/04/2017; 14:28] P.2 (1-8)

2 L.A. Wilson / Big Data Research ••• (••••) •••–•••

user to create a single job out of many smaller, independent jobs,
and run them on multiple nodes and processors. However, admin-
istrators for many shared HPC resources disable job array, because
they provide a way to circumvent fair use limits placed on the sys-
tem such as jobs-in-queue and dynamic submission restrictions.

Additionally, tools such as Apache YARN [12] and Mesos [6]
are well suited to systems devoted to analytic processing using
tools like Hadoop/Spark, which use the MapReduce [3] computa-
tional model. However, when the primary concern is running on
shared cyberinfrastructure in the form of managed HPC systems,
these particular resource brokering tools are not necessarily avail-
able, and may require significant re-engineering on the part of the
user in order to be of use.

3. Why Launcher?

Launcher is a simple utility for executing the throughput com-
puting workloads on managed advanced cyberinfrastructure sys-
tems [14,13]. Managed systems are those which are operated by
a third party entity (e.g., university/state/national computing cen-
ter) where the user has no input in or control of administrative
decisions, and jobs are scheduled to execute using a resource man-
ager such as Platform LSF [17], Oracle GridEngine [4], SLURM [15],
OpenPBS [7], or IBM LoadLeveler [10]. These systems are typically
tailored for physics and engineering problems, where a single pro-
gram uses many resources coupled with data exchange, such as
programs which make use of the Message Passing Interface (MPI).
On these systems, execution of sequential or single-process (non-
MPI) jobs may be discouraged or prevented altogether. Launcher
provides a facility for running many sequential or single-process
tasks bundled into a single multi-node job, which can be more ef-
ficiently scheduled on these managed systems.

Solving big data problems in many cases involves large, com-
putationally intensive simulations or analyses within a parameter
space. Launcher is intended for exactly these types of problems.
Using Launcher to speed searches through parameter spaces can
improve can not only help a researcher to generate the data nec-
essary for further analysis, but speed up the analysis or precondi-
tioning of data points before further analysis or reduction.

4. The basics

Throughout there will be examples of various scenarios where
Launcher can be employed. The Launcher can be downloaded from
GitHub at: https :/ /github .com /TACC /launcher. Installation on a lo-
cal system involves unpacking the tarball exporting the following
environment variable:

export LAUNCHER_DIR=<directory containing
launcher files>

4.1. How Launcher works

Launcher consists of four major scripts which work together to
run HTC workloads on managed HPC systems. The scripts are re-
sponsible for kick starting multi-node execution, managing multi-
core execution, and executing and scheduling individual jobs:

• paramrun: Top-level script responsible for interfacing with
the system’s resource manager, ensuring appropriate environ-
ment variables are set, and kick-starting multi-node execution,

• tskserver: Python-based TCP/IP dynamic scheduling ser-
vice,

• init_launcher: Script responsible for on-node process
management for multi-core and many-core processors, and

./a.out $LAUNCHER_TSK_ID

./a.out $LAUNCHER_JID
echo $LAUNCHER_PPN
echo $LAUNCHER_NHOSTS
grep "bar" foo | wc -l > baz.o$LAUNCHER_JID

Listing 1: Examples of valid job file entries [14].

• launcher: Leaf script responsible for executing appropriate
jobs from the job file, timing individual jobs, and providing
stdout/stderr content.

Fig. 1 shows the hierarchy of shell scripts used by the launcher
to efficiently execute across large numbers of multi-core and
many-core servers, as well as the environment variables used/de-
fined by the launcher which are available to the user (see Table 1).

4.2. Basic environment variables

Any of the provided variables in Table 1 can be referenced
in the job file. The job file can contain any shell-executable com-
mands, including referencing external shell scripts, using bash for
loops and pipes, and stdin/stdout/stderr redirection. The job file
can consist of any number of commands, placed one-per-line, so
long as there are no blank lines in the file. Listing 1 shows sev-
eral examples of valid job file entries. Launcher can be directed to
this job file by exporting the LAUNCHER_JOB_FILE environment
variable prior to calling paramrun.

4.3. “Hello, World!” – a simple launcher bundle

With all of the pieces of the launcher explained, we can now
put together a complete launcher bundle. Launcher can execute on
workstations and work groups of computers, as well as on HPC
systems. For this example, we will build a bundle to be run on a
cluster which is managed with the SLURM resource manager, al-
though other resource managers are easily supported.

Step 1: create a job file
As a first step, we will create a job file which prints a vari-

ant of “Hello, World!” to the screen as many times as we wish.
To start, we can create a text file (helloworld) which contains
some number of copies of this line, remembering to remove any
blank lines:

echo "Hello from $LAUNCHER_JID, task
$LAUNCHER_TSK_ID!"

For convenience, you can reference extras/examples/
helloworld inside the Launcher source directory.

Step 2: run the bundle
Once we have built a job file, we can execute the bundle in a

few different ways, depending on the system being used. On lo-
cal machines, a launcher bundle can be directly executed from the
command-line by setting LAUNCHER_JOB_FILE and invoking the
paramrun script:

$ export LAUNCHER_JOB_FILE=helloworld
$ LAUNCHER_DIR/paramrun

On managed systems where a job scheduler is used, a batch
submission script must first be build. When using SLURM, a sim-
ple batch script which will run the launcher on whatever nodes
SLURM allocates for this particular batch job. An example job
script, which assumes 4 cores per node and requests 4 nodes, is
given in Listing 2.

https://github.com/TACC/launcher

Download English Version:

https://daneshyari.com/en/article/4949088

Download Persian Version:

https://daneshyari.com/article/4949088

Daneshyari.com

https://daneshyari.com/en/article/4949088
https://daneshyari.com/article/4949088
https://daneshyari.com

