
JID:BDR AID:47 /REV [m5G; v1.185; Prn:2/09/2016; 9:29] P.1 (1-10)

Big Data Research ••• (••••) •••–•••

Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

Big Graph Mining: Frameworks and Techniques

Sabeur Aridhi a,∗, Engelbert Mephu Nguifo b,c

a Aalto University, School of Science, P.O. Box 12200, FI-00076, Finland
b Clermont University, Blaise Pascal University, LIMOS, BP 10448, F-63000 Clermont-Ferrand, France
c CNRS, UMR 6158, LIMOS, F-63173 Aubiere, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 January 2016
Received in revised form 12 June 2016
Accepted 24 July 2016
Available online xxxx

Keywords:
Big graphs, data mining
Pattern mining
Graph processing frameworks

Big graph mining is an important research area and it has attracted considerable attention. It allows to 
process, analyze, and extract meaningful information from large amounts of graph data. Big graph mining 
has been highly motivated not only by the tremendously increasing size of graphs but also by its huge 
number of applications. Such applications include bioinformatics, chemoinformatics and social networks. 
One of the most challenging tasks in big graph mining is pattern mining in big graphs. This task consists 
on using data mining algorithms to discover interesting, unexpected and useful patterns in large amounts 
of graph data. It aims also to provide deeper understanding of graph data. In this context, several 
graph processing frameworks and scaling data mining/pattern mining techniques have been proposed 
to deal with very big graphs. This paper gives an overview of existing data mining and graph processing 
frameworks that deal with very big graphs. Then it presents a survey of current researches in the field 
of data mining/pattern mining in big graphs and discusses the main research issues related to this field. 
It also gives a categorization of both distributed data mining and machine learning techniques, graph 
processing frameworks and large scale pattern mining approaches.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Over the last decade, big graph mining has attracted consider-
able attention. This field has been highly motivated, not only by 
the increasing size of graph data, but also by its huge number of 
applications. Such applications include the analysis of social net-
works [1,2], Web graphs [3], as well as spatial networks [4]. It has 
emerged as a hot topic that consists on the deliver of deeper un-
derstanding of the graph data. Frequent pattern mining is a main 
task in this context and it has attracted much interest. Several 
algorithms exist for frequent pattern mining. However, they are 
mainly used on centralized computing systems and evaluated on 
relatively small databases [5]. Yet, modern graphs are growing dra-
matically which makes the above cited approaches face the scala-
bility issue. Consequently, several parallel and distributed solutions 
have been proposed to solve this problem [6–11]. In addition to 
that, many distributed frameworks have been used to deal with 
the existing deluge of data. These distributed frameworks abstract 
away most of the challenges of building a distributed system and 
offer simple programming models for data analysis [12]. Most of 

* Corresponding author.
E-mail addresses: sabeur.aridhi@gmail.com (S. Aridhi), mephu@isima.fr

(E. Mephu Nguifo).

them are quite simple, easy to use and able to cope with poten-
tially unlimited datasets.

In this paper, we first study existing works on the field of 
big data analytics. Thus, we present a survey on distributed data 
mining and machine learning approaches. Then, we study exist-
ing graph processing frameworks and we highlight pattern mining 
solutions in big graphs. With reference to the literature we can 
identify many different types of distributed graph mining tech-
niques, with respect to the format of the input data, to produce 
many different kinds of patterns. We also give a categorization 
of both techniques for big data analytics, graph processing frame-
works and large scale pattern mining approaches. Techniques for 
big data analytics are described according to their related pro-
gramming model and the supported programming language. Graph 
processing frameworks are described according to their related 
programming model, the type of resources used by each frame-
work and whether the framework allows asynchronous execution 
or not. Pattern mining approaches are described according to the 
input, the output of each approach and the used programming 
model.

The remainder of the paper is organized as follows. In the fol-
lowing section, we present existing works on big data analytics. In 
Section 3, we present an overview of graph processing frameworks 
and graph processing related approaches. Specifically, we present 

http://dx.doi.org/10.1016/j.bdr.2016.07.002
2214-5796/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.bdr.2016.07.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
mailto:sabeur.aridhi@gmail.com
mailto:mephu@isima.fr
http://dx.doi.org/10.1016/j.bdr.2016.07.002


JID:BDR AID:47 /REV [m5G; v1.185; Prn:2/09/2016; 9:29] P.2 (1-10)

2 S. Aridhi, E. Mephu Nguifo / Big Data Research ••• (••••) •••–•••

works that deal with pattern mining techniques in big graphs. Fi-
nally, we discuss the presented approaches in Section 4.

2. Big data analytics

In this section, we review related works on MapReduce and 
distributed data mining and machine learning techniques in the 
context of Big Data.

2.1. MapReduce

MapReduce [13] is a framework for processing highly dis-
tributable problems across huge datasets using a large number 
of computers. It was developed within Google as a mechanism 
for processing large amounts of raw data, for example, crawled 
documents or web request logs. This data is so large, it must be 
distributed across thousands of machines in order to be processed 
in a reasonable amount of time. This distribution implies paral-
lel computing since the same computations are performed on each 
CPU, but with a different dataset. MapReduce is an abstraction that 
allows to perform simple computations while hiding the details of 
parallelization, data distribution, load balancing and fault tolerance. 
The central features of the MapReduce framework are two func-
tions, written by a user: Map and Reduce. The Map function takes 
as input a pair and produces a set of intermediate key-value pairs. 
The MapReduce library groups together all intermediate values as-
sociated with the same intermediate key and passes them to the 
Reduce function. The Reduce function accepts an intermediate key 
and a set of values for that key. It merges these values together to 
form a possible smaller set of values.

Hadoop is the open-source implementation of MapReduce. It is 
composed of two components. The first component is the Hadoop 
Distributed File System (HDFS) for data storage. The second one is 
the wide spread MapReduce programming paradigm [13]. Hadoop 
provides a transparent framework for both reliability and data 
transfers. It is the cornerstone of numerous systems which define 
a whole ecosystem around it. This ecosystem consists of several 
packages that runs on top of Hadoop including:

• PIG [14], a high level language for Hadoop;
• HBase [15], a column-oriented data storage on top of Hadoop;
• Hive [16], a framework for querying and managing large 

datasets residing in distributed storage using a SQL-like lan-
guage called HiveQL;

• Spark [17], a powerful general purpose processing framework 
that provides an ease of use tool for efficient analytics of het-
erogeneous data;

• Storm [18], an open source framework for processing large 
structured and unstructured data in real time;

• Flink [19], an open source framework for processing data in 
both real time mode and batch mode;

• H2O [20], a system that brings database-like interactiveness to 
Hadoop.

2.2. Distributed machine learning and data mining techniques

Data mining and machine learning hold a vast scope of using 
the various aspects of Big Data technologies for scaling existing 
algorithms and solving some of the related challenges [21]. In the 
following, we present existing works on distributed machine learn-
ing and data mining techniques.

2.2.1. NIMBLE
NIMBLE [22] is a portable infrastructure that has been specifi-

cally designed to enable the implementation of parallel machine 
learning (ML) and data mining (DM) algorithms. The NIMBLE 

Fig. 1. An overview of the software architecture of NIMBLE.

approach allows to compose parallel ML-DM algorithms using 
reusable (serial and parallel) building blocks that can be efficiently 
executed using MapReduce and other parallel programming mod-
els. The programming abstractions of NIMBLE have been designed 
with the intention of parallelizing ML-DM computations and al-
low users to specify data parallel, iterative, task parallel, and even 
pipelined computations. The NIMBLE approach has been used to 
implement some popular data mining algorithms such as k-Means 
Clustering and Pattern Growth-based Frequent Itemset Mining, 
k-Nearest Neighbors, Random Decision Trees, and RBRP-based Out-
lier Detection algorithm. As shown in Fig. 1, NIMBLE is organized 
into four distinct layers:

1. The user API layer, which provides the programming interface 
to the users. Within this layer, users are able to design tasks 
and Directed Acyclic Graphs (DAGs) of tasks to express depen-
dencies between tasks. A task processes one or more datasets 
in parallel and produces one or more datasets as output.

2. The architecture independent layer, which acts as the middle-
ware between the user specified tasks/DAGs, and the underly-
ing architecture dependent layer. This layer is responsible for 
the scheduling of tasks, and delivering the results to the users.

3. The architecture dependent layer, which consists of harnesses 
that allow NIMBLE to run portably on various platforms. Cur-
rently, NIMBLE only supports execution on the Hadoop frame-
work.

4. The hardware layer, which consists of the used cluster.

2.2.2. SystemML
SystemML [23] is a system that enables the development of 

large scale machine learning algorithms. It first expresses a ma-
chine learning algorithm in a higher-level language called Declar-
ative Machine learning Language (DML). Then, it executes the al-
gorithm in a MapReduce environment. This DML language exposes 
arithmetical and linear algebra primitives on matrices that are nat-
ural to express a large class of machine learning algorithms. As 
shown in Fig. 2, SystemML is organized into four distinct layers:

• The Language component: It consists of user-defined algo-
rithms written in DML.

• The High-Level Operator Component (HOP): It analyzes all the 
operations within a statement block and chooses from multi-
ple high-level execution plans. A plan is represented in a DAG 
of basic operations (called hops) over matrices and scalars.

• The Low-Level Operator Component (LOP): It translates the 
high-level execution plans provided by the HOP component 
into low-level physical plans on MapReduce.



Download English Version:

https://daneshyari.com/en/article/4949091

Download Persian Version:

https://daneshyari.com/article/4949091

Daneshyari.com

https://daneshyari.com/en/article/4949091
https://daneshyari.com/article/4949091
https://daneshyari.com

