
Big Data Research 6 (2016) 43–63

Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

Boosting the Efficiency of Large-Scale Entity Resolution with Enhanced 

Meta-Blocking

George Papadakis a,∗, George Papastefanatos b, Themis Palpanas c, Manolis Koubarakis a

a University of Athens, Greece
b Athena Research Center, Greece
c Paris Descartes University, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 March 2016
Accepted 29 August 2016
Available online 5 October 2016

Keywords:
Entity Resolution
Redundancy-positive blocking
Meta-blocking

Entity Resolution constitutes a quadratic task that typically scales to large entity collections through 
blocking. The resulting blocks can be restructured by Meta-blocking to raise precision at a limited cost 
in recall. At the core of this procedure lies the blocking graph, where the nodes correspond to entities 
and the edges connect the comparable pairs. There are several configurations for Meta-blocking, but no 
hints on best practices. In general, the node-centric approaches are more robust and suitable for a series 
of applications, but suffer from low precision, due to the large number of unnecessary comparisons they 
retain.
In this work, we present three novel methods for node-centric Meta-blocking that significantly improve 
precision. We also introduce a pre-processing method that restricts the size of the blocking graph by 
removing a large number of noisy edges. As a result, it reduces the overhead time of Meta-blocking by 
2 to 5 times, while increasing precision by up to an order of magnitude for a minor cost in recall. The 
same technique can be applied as graph-free Meta-blocking, enabling for the first time Entity Resolution 
over very large datasets even on commodity hardware. We evaluate our approaches through an extensive 
experimental study over 19 voluminous, established datasets. The outcomes indicate best practices for 
the configuration of Meta-blocking and verify that our techniques reduce the resolution time of state-of-
the-art methods by up to an order of magnitude.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

A common task in the context of Web Data is Entity Resolution
(ER), i.e., the identification of different entity profiles that per-
tain to the same real-world object. Exhaustive solutions to this 
task suffer from low efficiency, due to their inherently quadratic 
complexity: every entity profile has to be compared with all oth-
ers. This problem is accentuated by the continuously larger size of 
datasets that are now available on the Web. For example, the LOD-
Stats1 Web application recorded around a billion triples for Linked 
Open Data in December, 2011, which had grown to more than 100 
billion triples by March, 2016. As a result, ER typically scales to 
large data collections through approximate techniques, which sac-
rifice recall to a controllable extent in order to enhance precision 
and time efficiency.

* Corresponding author.
E-mail addresses: gpapadis@di.uoa.gr (G. Papadakis), 

gpapas@imis.athena-innovation.gr (G. Papastefanatos), themis@mi.parisdescartes.fr
(T. Palpanas), koubarak@di.uoa.gr (M. Koubarakis).

1 http://stats.lod2.eu.

The most popular among these techniques is blocking [1–3]. It 
groups similar entities into clusters (called blocks) so that compar-
isons are executed only between the entities within each block [4,
5]. Typically, blocking methods for Big Data have to overcome high 
levels of noise not only in attribute values, but also in attribute 
names, due to the unprecedented schema heterogeneity. For in-
stance, Google Base2 alone encompasses 100,000 distinct schemata 
that correspond to 10,000 entity types [6]. Most blocking methods 
deal with these high levels of noise through redundancy [1,7]: they 
place every entity profile into multiple blocks so as to reduce the 
likelihood of missed matches.

The simplest method of this type is Token Blocking [9,2]. It 
disregards schema information and semantics, creating a separate 
block for every token that appears in the attribute values of at 
least two entities. To illustrate its functionality, consider the entity 
profiles in Fig. 1(a), where p1 and p2 match with p3 and p4, re-
spectively; Token Blocking clusters them in the blocks of Fig. 1(b), 
which place both pairs of duplicates in at least one common block 

2 http://www.google.com/base.

http://dx.doi.org/10.1016/j.bdr.2016.08.002
2214-5796/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.bdr.2016.08.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
mailto:gpapadis@di.uoa.gr
mailto:gpapas@imis.athena-innovation.gr
mailto:themis@mi.parisdescartes.fr
mailto:koubarak@di.uoa.gr
http://stats.lod2.eu
http://www.google.com/base
http://dx.doi.org/10.1016/j.bdr.2016.08.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bdr.2016.08.002&domain=pdf


44 G. Papadakis et al. / Big Data Research 6 (2016) 43–63

Fig. 1. (a) A set of entity profiles, and (b) the blocks of Token Blocking.

at the cost of 13 comparisons, in total. The resulting computational 
cost is high, given that the brute-force approach executes 15 com-
parisons.

This is a general trait of block collections that involve redun-
dancy: in their effort to achieve high recall, they produce a large 
number of unnecessary comparisons. These come in two forms: 
the redundant ones repeatedly compare the same entity profiles 
across different blocks, while the superfluous ones compare non-
matching entities. In our example, b2 and b4 contain one redun-
dant comparison each, which are repeated in b1 and b3, respec-
tively; all other blocks entail superfluous comparisons between 
non-matching entity profiles, except for the redundant comparison 
p3–p5 in b8 (it is repeated in b6). In total, the blocks of Fig. 1(b) 
involve 3 redundant and 8 superfluous out of the 13 comparisons.

Current state-of-the-art. To mitigate this phenomenon, meth-
ods such as Comparison Propagation [10] and Iterative Block-
ing [11] aim to process an existing block collection in the optimal 
way (see Section 2 for more details). Among these methods, Meta-
blocking achieves the best balance between precision and recall, 
being one of the few techniques to scale well to millions of en-
tities [7,8]. In essence, it restructures a block collection B into a 
new one B ′ that contains a significantly lower number of unnec-
essary comparisons, while detecting almost the same number of 
duplicates. This procedure operates in 2 steps.

First, it transforms B into the blocking graph G B , which con-
tains a node ni for every entity pi in B and an edge ei, j for every 
pair of co-occurring entities pi and p j (i.e., entities sharing at least 
one block). Fig. 2(a) depicts the graph for the blocks in Fig. 1(b). 
As no parallel edges are constructed, every pair of entities is com-
pared at most once, thus eliminating all redundant comparisons.

Second, it annotates every edge with a weight analogous to the 
likelihood that the adjacent entities are matching, based on the 
blocks they have in common. For instance, the edges in Fig. 2(a) 
are weighted with the Jaccard similarity of the lists of blocks con-
taining their adjacent entities. The edges with low weights corre-
spond to superfluous comparisons and are pruned. A possible ap-
proach is to discard all edges with a weight lower than the overall 
mean one (1/4). This yields the pruned graph in Fig. 2(b).

Pruning algorithms of this type are called edge-centric, because 
they iterate over the edges of the blocking graph and retain the 
globally best ones. Higher recall is achieved by the node-centric
pruning algorithms, which iterate over the nodes of the blocking 
graph and retain the locally best edges. These are the edges with 
the highest weights in each neighborhood and correspond to the 
most likely matches for each entity. In contrast, the edge-centric 
algorithms do not guarantee to include every entity in the restruc-
tured blocks. Their recall is lower than the node-centric algorithms 
by 20%, on average, when compared under the same settings [7].

Fig. 2. (a) A blocking graph extracted from the blocks in Fig. 1(b), (b) one of the pos-
sible edge-centric pruned blocking graphs, and (c) the new blocks derived from it.

Fig. 3. (a) One of the possible node-centric pruned blocking graphs for the graph in 
Fig. 2(a). For clarity, the retained edges are directed and outgoing, since they might 
be preserved in the neighborhoods of both adjacent entities. (b) The new blocks 
derived from the pruned graph.

To illustrate the functionality of node-centric approaches, con-
sider the pruned blocking graph in Fig. 3(a); for each node in 
Fig. 2(a), it has retained the adjacent edges that exceed the av-
erage weight of the neighborhood. Regardless of the type of the 
pruning algorithm, the restructured block collection B ′ is formed 
by creating a new block for every retained edge – as depicted in 
Figs. 2(c) and 3(b). In both cases, B ′ maintains the original recall, 
while reducing the number of executed comparisons to 5 and 9, 
respectively.

Open issues. Despite the significant enhancements in efficiency, 
Meta-blocking suffers from three drawbacks:

(i) Though more robust to recall, the node-centric pruning al-
gorithms exhibit low efficiency, because they retain a considerable 
portion of redundant and superfluous comparisons. In most cases, 
their precision is lower than the edge-centric ones by 50% [7]. This 
is also illustrated in our example, where the restructured blocks 
of Fig. 3(b) contain 4 redundant comparisons in b′

2, b′
4, b′

6 and b′
8

and 3 superfluous in b′
5, b′

7 and b′
9; the edge-centric counterpart 

in Fig. 2(c) retains just 3 superfluous comparisons.
(ii) The processing of voluminous datasets involves a significant 

overhead. The corresponding blocking graphs comprise millions 
nodes that are strongly connected with billions edges. Inevitably, 
the pruning of such graphs is very time-consuming, leaving plenty 
of room for improving its efficiency (see Section 5.6).

(iii) Meta-blocking is difficult to configure. There are five dif-
ferent weighting schemes that can be combined with four pruning 
algorithms, thus yielding 20 pruning schemes, in total (see Section 3
for more details). As yet, there are no guidelines on how to choose 
the best configuration for the application at hand and the available 
resources.

Proposed solution. In this paper, we describe novel techniques 
for overcoming the weaknesses of Meta-blocking.

First, we propose three new node-centric pruning algorithms 
that achieve significantly higher precision than the existing ones. 
The most conservative approach, Redundancy Pruning, produces re-
structured blocks with no redundant comparisons and prunes up 
to 50% more comparisons. It achieves the same recall as the ex-
isting techniques, but its precision is almost the double. The other 



Download English Version:

https://daneshyari.com/en/article/4949094

Download Persian Version:

https://daneshyari.com/article/4949094

Daneshyari.com

https://daneshyari.com/en/article/4949094
https://daneshyari.com/article/4949094
https://daneshyari.com

