Accepted Manuscript

A linearized circle packing algorithm

PII:
DOI:
Reference:

To appear in:
Computational Geometry: Theory and Applications
S0925-7721(17)30017-2
http://dx.doi.org/10.1016/j.comgeo.2017.03.002
COMGEO 1467

Received date: 4 May 2016
Accepted date: 13 March 2017

Please cite this article in press as: C. Collins et al., A linearized circle packing algorithm, Comput. Geom. (2017), http://dx.doi.org/10.1016/j.comgeo.2017.03.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

A LINEARIZED CIRCLE PACKING ALGORITHM

CHARLES COLLINS, GERALD L. ORICK, AND KENNETH STEPHENSON

Abstract

This paper presents a geometric algorithm for approximating radii and centers for a variety of univalent circle packings, including maximal circle packings on the unit disc and the sphere and certain polygonal circle packings in the plane. This method involves an iterative process which alternates between estimates of circle radii and locations of circle centers. The algorithm employs sparse linear systems and in practice achieves a consistent linear convergence rate that is far superior to traditional packing methods. It is deployed in a MATLAB ${ }^{\circledR}$ package which is freely available. This paper gives background on circle packing, a description of the linearized algorithm, illustrations of its use, sample performance data, and remaining challenges.

A circle packing is a configuration of circles with a specified pattern of tangencies; in our case a triangulation of a topological disc or sphere [34]. It is important to distinguish its combinatorial and geometric structures. The pattern of tangencies is given as an abstract simplicial 2-complex K, a combinatoric object with no inherent geometry, whereas a circle packing P is a concrete configuration of circles - specifically, circles tangent in the pattern of K. Our packings will be univalent, meaning that the circles have mutually disjoint interiors. By connecting centers of tangent circles with geodesic segments, P provides an embedding of K. It is in this sense that a univalent circle packing P imposes a geometric structure on a combinatorial object K.

A toy example is illustrated in Figure 1: there is a hand sketch of the abstract complex K, a generic univalent packing P, and the maximal packing P_{K} in the unit disc \mathbb{D}, one of the three types of circle packings targeted by the new algorithm. Though traditional methods easily handle simple cases like this, the linearized algorithm, originating with the second author [20] and known as GOpack, is aimed at problems of much greater size and complexity. Note in Figure 1 that the geometric triangulations (shaded) formed by the packings are embeddings of K.

[^0]
https://daneshyari.com/en/article/4949115

Download Persian Version:

https://daneshyari.com/article/4949115

Daneshyari.com

[^0]: 1991 Mathematics Subject Classification. Primary 52C26, 30C30; Secondary 65E05, 31C20.

 Key words and phrases. Circle packing, Tutte embedding, sparse linear system.
 Preliminary work was supported in part by NSF Grant DMS-0101324. The third author is supported by a Simons Foundation Collaboration Grant.

