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a  b  s  t  r  a  c  t

Rough  set  reduction  has  been  used  as  an  important  preprocessing  tool  for pattern  recognition,  machine
learning  and  data  mining.  As  the  classical  Pawlak  rough  sets  can just  be used  to  evaluate  categorical
features,  a neighborhood  rough  set model  is  introduced  to deal  with  numerical  data  sets.  Three-way
decision  theory  proposed  by Yao  comes  from  Pawlak  rough  sets  and  probability  rough  sets for  trading  off
different  types  of classification  error  in order  to obtain  a minimum  cost  ternary  classifier.  In  this  paper,  we
discuss  reduction  questions  based  on  three-way  decisions  and  neighborhood  rough  sets.  First,  the  three-
way decision  reducts  of  positive  region  preservation,  boundary  region  preservation  and  negative  region
preservation  are  introduced  into  the  neighborhood  rough  set model.  Second,  three  condition  entropy
measures  are constructed  based  on  three-way  decision  regions  by considering  variants  of  neighborhood
classes.  The  monotonic  principles  of entropy  measures  are  proved,  from  which  we  can  obtain  the heuristic
reduction  algorithms  in  neighborhood  systems.  Finally,  the experimental  results  show  that  the three-way
decision  reduction  approaches  are  effective  feature  selection  techniques  for addressing  numerical  data
sets.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Feature reduction is a quite useful data preprocessing technique, aiming to
determine a minimal feature subset from a problem domain while retaining a
suitably high classification accuracy of decision systems. It is also mentioned as
a  semantic-preserving dimension reduction [15,7], attribute reduction [47] and fea-
ture selection [8], applied in many areas including pattern recognition [36], machine
learning [46], data mining [26] and big data [32], etc. As to the machine learning
problems, feature reduction is an important preprocess to achieve the essence by
deleting noisy, irrelevant or misleading features.

Rough set theory (RST) [29], proposed by Pawlak, has been used successfully as
a  reduction tool to discover data dependencies by reducing the redundant features
that contained in a data set. In the last two  decades, many methods for feature reduc-
tion  have been developed in researches of rough set theory [30,33,28,34,18,38].
According to the different knowledge representations, methods of rough set reduc-
tion  are mainly classified into two categories: algebra methods and information
entropy methods [27]. The methods of algebra representation include positive
region approaches and discernibility matrix approaches. In the algebra representa-
tions, a reduct is defined by a positive region preservation or a discernibility matrix
function. Pawlak in [30] proposed a reduct of positive region preservation that does
not vary the positive region or the quality of classification. Skowron and Rauszer in
[33] introduced a new approach to knowledge reduction by providing a function of
discernibility matrix that can obtain all reducts of a given data set. In the information
entropy representations, a reduct is defined by Shannon’s entropy and its extensions.
Miao and Hu in [28] proposed an entropy measure for information systems and a
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mutual information measure for decision systems. Furthermore, they presented two
heuristic reduction algorithms based on the information entropy and mutual infor-
mation respectively. Slezak in [34] discussed the applications of feature reduction
in  data mining area by an entropy measure and extracted decision rules from big
data sets. Liang et al. in [18] introduced a new information entropy to incomplete
data reduction process for measuring the uncertainty of incomplete information
systems. Wang et al. in [38] developed a novel reduction algorithm based on the
condition entropy of a decision system.

Since the real world existing massive uncorrect, uncertain and noisy data, the
Pawlak rough set theory is extended by introducing probabilistic theory. The three-
way decision theory proposed by Yao in [44,45] comes from Pawlak rough set theory
and  probabilistic theory [24,27,40,41]. Its main purpose is to interpret the posi-
tive,  negative and boundary regions of rough sets as three decisions outcomes:
acceptance, rejection and uncertainty (or deferment) in a ternary classification
respectively [9]. In recent years, many researchers mainly focus on model exten-
sions and practical applications of three-way decisions. The one category is model
researches on three-way decisions. It mainly contains the extension models of
rough sets, such as decision-theoretic rough sets [2,42], variable precision rough
sets [17,52], Bayesian rough sets [35], fuzzy rough sets and rough fuzzy sets [3],
interval-valued fuzzy rough sets [5,10] and dominance-based fuzzy rough sets [4].
The another category is practical applications of three-way decisions, such as gov-
ernment decisions [25], text classification [19], information filtering [20], email
filtering [16], investment decisions [23], cluster analysis [22] and attribute reduction
of  three-way decisions [27].

However, the Pawlak rough set reduction and three-way decision reduction are
also established on the equivalence approximate space and only compatible for cat-
egorical data sets. They need to scatter the records when processing continuous
numerical data, this will lead to losing of information (including the neighborhood
structure information and order structure information in real spaces) [15,11], so
the reducts of numerical data sets are strongly related with the methods of scat-
ting. To overcome this drawback, many extensions of Pawlak rough set theory and
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their corresponding definitions on attribute reduction have been presented, such
as  fuzzy rough sets [7,43,12], tolerance approximate models [31], similarity rough
approximate models [37], dominance approximation relation models [6], covering
approximation models [49–51] and neighborhood granular models [21,39]. Among
all  the extensions, the neighborhood rough set model [13,14] can be regarded as
a  specified implementation of the neighborhood granular model. The neighbor-
hood rough set model can process both numerical and categorical data sets via the
ı-neighborhood set, which will not break the neighborhood structure and order
structure of data sets in real spaces.

However, there are some premature theories and disadvantages about three-
way  decision reduction. The monotonicity of decision regions (positive region,
boundary region or negative region) preservation reductions no longer holds in
the  three-way decision systems. The monotonicity is very important for construc-
ting  heuristic reduction algorithms, which can quickly converge to be an attribute
reduct. Monotonously heuristic information that can guide searches for the attribute
reduction in the three-way decision model is unavailable. Therefore, monotonous
measure functions need to be developed to design heuristic reduction algorithms
in  the three-way decision model. In addition, few studies have been published on
three-way decision reduction in neighborhood systems. In this paper, we  propose a
novel method for the attribute reduction of neighborhood decision systems based
on  three-way decision theory. We  review some concepts related to attribute reduc-
tions with neighborhood rough sets and focus on the definitions of attribute reducts
based on decision region preservation of three-way decisions in neighborhood deci-
sion systems. As monotonously heuristic information to design attribute reduction
algorithms of the three-way decisions in neighborhood systems is lacking. Hence,
we  propose three monotonic measure functions by considering variants of the con-
dition information entropy. Finally, heuristic computing methods of three types of
decision region preservation reducts are also given.

The rest of this paper is structured as follows. Section 2 describes Pawlak rough
set theory, three-way decision theory and the neighborhood rough set model. Sec-
tion 3 introduces the positive region preservation reduct, the boundary region
preservation reduct and the negative region preservation reduct based on a three-
way  decision model in neighborhood systems, and gives the computing methods
for  three types of decision region preservation reducts by introducing three novel
monotonic measures. Furthermore, we develop heuristic algorithms to obtain three
types of decision region preservation reducts. Section 4 provides an experimen-
tal  analysis, including the theoretic analysis and the effectiveness of the proposed
attribute reduction methods. Section 5 concludes the paper, and proposes further
work in this area.

2. Preliminaries

In this section, we recall the basic notions related to Pawlak
rough sets [30], three-way decisions [44,47] and neighborhood
rough sets [14].

2.1. Pawlak rough sets and a Pawlak reduct

Definition 1. [29] A decision system is a four-tuple: S = (U, C ∪ D,
V, f), where U = {x1, x2, . . .,  xn} is a finite non-empty set of objects
called universe, C is a non-empty finite set of condition attributes,
D is a finite set of decision attributes, C∩ D = ∅; Va is a non-empty
set of values of a ∈ (C ∪ D), and f : U × (C ∪ D) → Va is an information
function that maps an object in U to exactly one value in Va.

For brevity, a decision system is denoted by S = (U, C ∪ D).

Definition 2. [29] Given a decision system S = (U, C ∪ D), for a sub-
set B ⊆ C, an indiscernibility relation is defined by:

IND(B) = {(x, y) ∈ U × U|∀b ∈ B, f (x, b) = f (y, b)}. (1)

Obviously, IND(B) is an equivalence relation, which is reflexive,
symmetric and transitive. The family of all equivalence classes of
IND(B) will be denoted by U/IND(B), or simply U/B; an equivalence
class of IND(B) containing x will be denoted by [x]B.

Definition 3. [29] Given a decision system S = (U, C ∪ D), for an
attribute subset B ⊆ C and an object subset X ⊆ U, the lower and
upper approximations of X with respect to B are defined by:

B∗(X) = {x ∈ U|[x]B ⊆ X} = ∪{[x]B|[x]B ⊆ X}; (2)

B∗(X) = {x ∈ U|[x]B ∩ X /= ∅} = ∪{[x]B|[x]B ∩ X /= ∅}.  (3)

The ordered pair 〈B*(X), B*(X)〉 is called a Pawlak rough set of
X with respect to the equivalence relation IND(B). According to
the lower and upper approximations, one can obtain the positive,
boundary and negative regions [29]:

POSB(X) = B∗(X); (4)

BNDB(X) = B∗(X) − B∗(X); (5)

NEGB(X) = U − POSB(X) ∪ BNDB(X) = U − B∗(X). (6)

The positive region POSB(X) consists of all objects that are defi-
nitely contained in the set X. The negative region NEGB(X) consists
of all objects that are definitely not contained in the set X. The
boundary region BNDB(X) consists of all objects that may  be con-
tained in X. Because approximations are from equivalence classes,
inclusion into the boundary region reflects uncertainty about the
classification of objects.

A classical attribute reduct in Pawlak rough set model is a rela-
tive reduct with respect to the decision attribute D, which is defined
by requiring that the positive region of the decision attribute D is
unchanged.

Definition 4. [29] Given a decision system S = (U, C ∪ D), and
U/D = {D1, D2, . . .,  Dn}, an attribute set R ⊆ C is a Pawlak reduct of C
with respect to D if it satisfies the following two conditions:

(1) POSR(D) = POSC(D);
(2) for any attribute a ∈ R, POSR−{a}(D) /= POSC(D),

where POSC (D) =
⋃n

i=1POSC (Di).
In this definition, condition (1) is also called a positive preser-

vation condition and condition (2) is called a set independency
condition.

2.2. Three-way decision rough set model

In this subsection, we  introduce the basic concepts related to the
three-way decision theory proposed by Yao in [44]. There are only
two states and three actions (accept, defer and reject). The state
set � = (X, � X) indicates that an element is in X and not in X, and
the action set is A = {aP, aB, aN}, where aP, aB and aN represent the
three actions of deciding that an object is in the sets POS(X), BND(X)
and NEG(X), respectively. Moreover, when an object belongs to X,
let �PP, �BP and �NP denote the costs of taking the actions aP, aB

and aN, respectively; when an object does not belong to X, then let
�PN, �BN and �NN denote the costs of taking the same three actions,
respectively. The loss functions regarding the states X and �X can
be expressed by a 2 × 3 matrix, as follows:

aP aB aN

X �PP �BP �NP

�X �PN �BN �NN

Given a decision system S = (U, C ∪ D), for a subset B ⊆ C, [x]B

denotes the equivalence class of x with respect to IND(B), and the
probabilities for the two complement states are denoted by

P(X|[x]B) = |X∩[x]B |
|[x]B | and P(� X|[x]B) = 1 − P(X|[x]B).

From the matrix, the expected loss associated with taking dif-
ferent actions can be expressed by:

R(aP |[x]) = �PPP(X|[x]B) + �PNP(� X|[x]B);
R(aB|[x]) = �BPP(X|[x]B) + �BNP(� X|[x]B);
R(aN |[x]) = �NPP(X|[x]B) + �NNP(� X|[x]B).

The Bayesian decision procedure leads to the following minimum-
risk decision rules:
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