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In 2001, Károlyi, Pach and Tóth introduced a family of point sets to solve an Erdős–Szekeres 
type problem, which have been used to solve several other Erdős–Szekeres type problems. 
In this paper we refer to these sets as nested almost convex sets. A nested almost convex 
set X has the property that the interior of every triangle determined by three points in 
the same convex layer of X , contains exactly one point of X . In this paper, we introduce 
a characterization of nested almost convex sets. Our characterization implies that there 
exists at most one (up to equivalence of order type) nested almost convex set of n points, 
for any integer n. We use our characterization to obtain a linear time algorithm to construct 
nested almost convex sets of n points, with integer coordinates of absolute values at most 
O (nlog2 5). Finally, we use our characterization to obtain an O (n log n)-time algorithm to 
determine whether a set of points is a nested almost convex set.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

We say that a set of points in the plane is in general position if no three of its points are collinear. Throughout this paper 
all points sets are in general position. In [9], Erdős asked for the minimum integer E(s, l) that satisfies the following. Every 
set of at least E(s, l) points, contains s points in convex position and at most l points in its interior. Let X be a set of points. 
A k-hole of X is a polygon with k vertices, all of which belong to X and without points of X in its interior; the polygon 
may be convex or non-convex. In 1983, Horton surprised the community with a simple proof that E(s, l) does not exist for 
l = 0 and s ≥ 7 [12]; Horton constructed arbitrarily large point sets with no convex 7-holes. Note that for l = 0, E(s, l) is the 
minimum integer such that every set of at least E(s, 0) points contains at least one s-hole.

In 2001 [14] Károlyi, Pach and Tóth introduced a family of sets that have been used in various problems related to the 
original question of Erdős. They did not name this family; in this paper we refer to these sets as nested almost convex sets. 
They have been used in the following problems.
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A modular version of the Erdős problem. In 2001 [14] Károlyi, Pach and Tóth used the nested almost convex sets to prove 
that, for any s ≥ 5l/6 + O (1), there is an integer B(s, l) with the following property. Every set of at least B(s, l)
points in general position contains s points in convex position such that the number of points in the interior 
of their convex hull is 0 modulo (l). This “modular” version of the Erdős problem was proved for s ≥ l + 2 by 
Bialostocki, Dierker, and Voxman [5]. The original upper bound on B(s, l) was later improved by Caro in [7].

A version of the Erdős problem in almost convex sets. We say that X is an almost convex set if every triangle with vertices 
in X contains at most one point of X in its interior. Let N(s) be the smallest integer such that every almost 
convex set of at least N(s) points contains an s-hole. In 2007 [17] Valtr Lippner and Károlyi used the nested 
almost convex sets to prove that:

N(s) =
{

2(s+1)/2 − 1 if s ≥ 3 is odd
3
2 2s/2 − 1 if s ≥ 4 is even.

(1)

The authors used the nested almost convex sets to attain the equality in (1). The existence of N(s) was first proved 
by Károlyi, Pach and Tóth in [14]. The upper bound for N(s) was improved by Kun and Lippner in [15], and it was 
improved again by Valtr in [16].

Maximizing the number of non-convex 4-holes. In 2014 [1] Aichholzer, Fabila-Monroy, González-Aguilar, Hackl, Heredia, 
Huemer, Urrutia, and Vogtenhuber proved that the maximum number of non-convex 4-holes in a set of n points 
is at most n3/2 − �(n2). The authors used the nested almost convex sets to prove that some sets have n3/2 −
�(n2 log(n)) non-convex 4-holes.

Blocking 5-holes. A set B blocks the convex k-holes in X , if any k-hole of X contains at least one element of B in the 
interior of its convex hull. In 2015 [6] Cano, Garcia, Hurtado, Sakai, Tejel, and Urritia used the nested almost 
convex sets to prove that: n/2 − 2 points are always necessary and sometimes sufficient to block the 5-holes of a 
point set with n elements in convex position and n = 4k. The authors used the nested almost convex sets as an 
example of sets for which n/2 − 2 points are sufficient to block all 5-holes.

We now define formally the nested almost convex sets.

Definition 1.1. Let X be a point set; let k be the number of convex layers of X ; and for 1 ≤ j ≤ k, let R j be the set of points 
in the j-th convex layer of X , with R1 being the most internal one. We say that X is a nested almost convex set if:

1. X j := R1 ∪ R2 ∪ · · · ∪ R j is in general position,
2. the vertices in the boundary of the convex hull of X j are the elements of R j , and
3. any triangle determined by three points of R j , with j > 1, contains precisely one point of X j−1 in its interior.

In this paper, we give a characterization of when a set of points is a nested almost convex set. This is done by first 
defining a family of trees. If there exists a map, satisfying certain properties, from the point set to the nodes of a tree in 
the family, then the point set is a nested almost convex set. This map encodes a lot of information about the point set. For 
example, it determines the location of any given point with respect to the convex hull; we use this information to obtain 
an O (n log n)-time algorithm to decide whether a set of points is a nested almost convex set. This map also determines the 
orientation of any given triple of points. This implies that for every n there exists essentially at most one nested almost 
convex set. We further apply this information to obtain a linear-time algorithm that produces a representation of a nested 
almost convex set of n points (with n = 2k−1 − 2 or n = 3 · 2k−1 − 2) on an small integer grid of size O (nlog2 5).

The order type of a point set X = {x1, x2, . . . xn} is a mapping that assigns to each ordered triple (xi, x j, xk) an orientation. 
If xk is to the left of the directed line from xi to x j , the orientation of (xi, x j, xk) is counterclockwise. If xk is to the right 
of the directed line from xi to x j , the orientation of (xi, x j, xk) is clockwise. We say that two sets of points have the same 
order type, if there exists a bijection between these sets that preserves the orientation of all triples.

The order type was introduced by Goodman and Pollack in [10], and it has been widely used in Combinatorial Geometry 
to classify point sets; two sets of points are essentially the same if they have the same order type. As a consequence of the 
characterization of nested almost convex sets presented in Section 2, we have the following.

Theorem 1.2. If n = 2k−1 − 2 or n = 3 · 2k−1 − 2, there is exactly one order type that corresponds to a nested almost convex set with 
n points; for other values of n, nested almost convex sets with n points do not exist.

In previous papers, two constructions of nested almost convex sets have been presented. The first construction was 
introduced by Károlyi, Pach and Tóth in [14]. The second construction was introduced by Valtr, Lippner and Károlyi in [17]
six years later.

Construction 1: Let X1 be a set of two points. Assume that j > 0 and that X j has been constructed. Let z1, . . . , zr denote 
the vertices of R j in clockwise order. Let P j be the polygon with vertices in R j . Let ε j, δ j > 0. For any 1 ≤ i ≤ r, 
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