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Given an even number of points in a plane, we are interested in matching all the points 
by straight line segments so that the segments do not cross. Bottleneck matching is a 
matching that minimizes the length of the longest segment. For points in convex position, 
we present a quadratic-time algorithm for finding a bottleneck non-crossing matching, 
improving upon the best previously known algorithm of cubic time complexity.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let P be a set of n points in the plane, where n is an even number. Let M be a perfect matching of points in P , using 
n/2 straight line segments to match the points, that is, each point in P is an endpoint of exactly one line segment. We 
forbid line segments to cross. Denote the length of a longest line segment in M with bn(M), which we also call the value
of M . We aim to find a matching that minimizes bn(M). Any such matching is called bottleneck matching of P .

1.1. Related work

There is plentiful research on various geometric problems involving pairings without crossings. Some of the considered 
problems examine matchings of various planar objects, see [7,6,13], while more basic problems involve matching pairs of 
points by straight line segments, see [4,3,5]. There is always a non-crossing matching of points with non-crossing segments, 
and moreover it is straightforward to prove that a matching minimizing the total sum of lengths of its segments has to be 
non-crossing.

In [10], Chang, Tang and Lee gave an O (n2)-time algorithm for computing a bottleneck matching of a point set, but 
allowing crossings. This result was extended by Efrat and Katz in [12] to higher-dimensional Euclidean spaces.

Abu-Affash, Carmi, Katz and Trablesi showed in [2] that the problem of computing non-crossing bottleneck matching of 
a point set is NP-complete and does not allow a PTAS. They gave a 2

√
10 factor approximation algorithm, and also showed 

that the case where all points are in convex position can be solved exactly in O (n3) time. In [1], Abu-Affash, Biniaz, Carmi, 
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Maheshwari and Smid presented an algorithm for computing a non-crossing bottleneck plane matching of size at least 
n/5 in O (n log2 n) time. They then extended it to provide an O (n log n)-time approximation algorithm which computes a 
plane matching of size at least 2n/5 whose edges have length at most 

√
2 + √

3 times the length of a longest edge in a 
non-crossing bottleneck matching.

Bichromatic (sometimes also called bipartite) versions of the bottleneck matching problem, where only points of different 
colors are allowed to be matched, have also been studied. Efrat, Itai and Katz showed in [11] that a bottleneck matching 
between two point sets, with possible crossings, can be found in O (n3/2 log n) time. Bichromatic non-crossing bottleneck 
problem was proved to be NP-complete by Carlsson, Armbruster, Bellam and Rahul in [9].

Biniaz, Maheshwari and Smid in [8] study special cases of non-crossing bichromatic bottleneck matchings. They show 
that the case where all points are in convex position can be solved in O (n3) time with an algorithm similar to the one for 
monochromatic case presented in [2]. They also consider the case where the points of one color lie on a line and all points 
of the other color are on the same side of that line, providing an O (n4) algorithm to solve it. The same results for these 
special cases are independently obtained in [9]. In [8] an even more restricted problem, a case where all points lie on a 
circle, is solved by constructing an O (n log n)-time algorithm.

1.2. Monochromatic bottleneck non-crossing matchings for convex point sets and our results

In what follows we consider the case where all points of P are in convex position, i.e. they are the vertices of a convex 
polygon P , and they are monochromatic, i.e. any two points from P can be matched. As we are going to deal with matchings 
without crossings, from now on, the word matching is used to refer only to pairings that are crossing-free.

Let us label the points v0, v1, . . . , vn−1 in positive (counterclockwise) direction. To simplify the notation, we will often 
use only the indices when referring to the vertices. We write {i, . . . , j} to represent the sequence i, i + 1, i + 2, . . . , j − 1, j, 
where all operations are calculated modulo n; note that i is not necessarily less than j, and {i, . . . , j} is not the same as 
{ j, . . . , i}. We say that (i, j) is a feasible pair if there exists a matching containing (i, j), which in this case simply means 
that {i, . . . , j} is of even size.

The problem of finding a bottleneck matching of points in convex position can be solved in polynomial time using 
dynamic programming algorithm, as presented in [2]. Similar algorithm for bichromatic case is presented in [8] and [9]. The 
algorithm is fairly straightforward, and we are going to describe it briefly.

The subproblems we consider are the tasks of optimally matching only the points in {i, . . . , j}, where i, j ∈ {0, . . . , n − 1}
and j − i is odd. Each matching M on {i, . . . , j} matches i with some k ∈ {i + 1, . . . , j}, where (i, k) is feasible. Segment 
(i, k) divides M in two parts, a matching on {i + 1, . . . , k − 1} and a matching on {k + 1, . . . , j}. If we solve those two 
parts optimally, we can combine them into an optimal matching of {i, . . . , j} that contains (i, k). We go through all the 
possibilities for k and take the best matching obtained in this way, yielding an optimal matching of points in {i, . . . , j}. If 
we denote the value of this optimal matching by bi, j , we get the following recursive formula,

bi, j = min
k=i+1,i+3,..., j

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|vi v j| if j − i = 1

max{|vi vk|,bk+1, j} if k − i = 1

max{|vi vk|,bi+1,k−1} if k = j

max{|vi vk|,bi+1,k−1,bk+1, j} otherwise.

This formula is then used to fill in the dynamic programming table. There are O (n2) entries, and to calculate each 
we need O (n) time. Therefore, the described algorithm finds a bottleneck matching for monochromatic points in convex 
position in O (n3) time.

In this paper, we present a faster algorithm for finding a bottleneck matching for monochromatic points in convex 
position, with only O (n2) time complexity. En route, we prove a series of results that give insights in the properties and 
structure of bottleneck matchings.

2. Structure of bottleneck matching

Our aim is to show the existence of a bottleneck matching with a certain structure that we can utilize to construct 
an efficient algorithm. We do so by proving a sequence of lemmas, with each lemma imposing an increasingly stronger 
condition on the structure.

Let us split all point pairs into the two categories. Pairs consisting of two neighboring vertices of P are called edges, and 
all other pairs are called diagonals. Each matching is, thus, comprised of edges and diagonals.

On several occasions it will be useful to discern between the two possible orientations of a diagonal. Although in most 
of the paper we do not worry about the order of i and j in the pair (i, j), we will add the qualifier “oriented” whenever 
the distinction between (i, j) and ( j, i) is important.

The turning angle of {i, . . . , j}, denoted by τ (i, j), is the angle by which the vector −−−→vi vi+1 should be rotated in positive 
direction to align with the vector −−−−→v j−1 v j , see Fig. 1.
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