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a  b  s  t  r  a  c  t

Detecting  discontinuities  in  electrical  signals  from  recorded  oscillograms  makes  it possible  to segment
them. This  is the  first  step  in implementing  automated  methods  which  will  ensure  disturbances  in  elec-
trical power  systems  are  detected,  classified  and  stored.  In  this  context,  this  paper  presents  a way  of
determining  an  adaptive  threshold  based  on  the  decomposition  of  electrical  signals through  the Discrete
Wavelet  Transform  (DWT)  using  Daubechies  family  filter  banks,  allowing  for the  segmentation  of  sig-
nals and,  as  a consequence,  the  analysis  of  disturbances  related  to Power  Quality  (PQ).  Considering  this,
the  proposed  approach  was  initially  evaluated  for signals  originating  from  mathematical  models  repre-
senting  short-term  voltage  fluctuations,  transients  (impulsive  and  oscillatory)  and  harmonic  distortions.
In  the  synthetic  signal  database,  either  single  or combined  occurrences  of  more  than  one  disturbance
were  considered.  By  applying  the  DWT,  the amount  of energy  and  entropy  of  energy  were  then  calcu-
lated  for  the  leaves  of  the  second  level  of decomposition.  Based  on  these  calculations,  a  unique adaptive
threshold  could  be  determined  for each  analyzed  signal.  Afterwards,  the  amount  of existing  intersec-
tions  between  the  threshold  and the  curve  of  details  obtained  for the  second  level of decomposition  was
then  defined.  Thus,  the  intersections  determine  the beginning  and end  of the  segments.  In  order  to vali-
date  the  approach,  the  performance  of the proposed  methodology  was  analyzed  considering  the  signals
obtained  from  oscillograms  provided  by  IEEE  1159.3  Task  Force,  as well  as real  oscillograms  obtained
from  a regional  distribution  utility.  After these  analyses,  it was  observed  that  the  proposed  approach  is
efficient  and  applicable  to automatic  segmentation  of  events  related  to  PQ.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Significant technological developments in recent years have dramatically
changed Power Systems. In this scenario, monitoring and analysis of supplied Power
Quality (PQ) has proved to be of fundamental importance to regulate the electric-
ity  sector [1,2]. Therefore, any variations in the supply of electricity can result in
poor  operation or failure of consumers’ equipment (whether residential, commercial
and/or industrial), causing damage, instability and reduced useful life, among other
undesirable situations [1–4]. However, in order to have significant improvements
in the quality of power supplied to customers, the reasons and causes of distur-
bances should be constantly analyzed so that preventive and corrective actions can
be  used efficiently [5]. Thus, automatic tools to support the detection, classification,
location and proper storage of records (oscillograms) regarding disturbances are
essential [4].

In the above context, a number of related studies has focused on monitoring
power systems [6–8], mainly concerning Smart Grids. Due to this, allocating Smart
Meters is extremely relevant and important for Smart Grids. In contrast, the amount
of  electrical signals to be recorded and analyzed later can make the monitoring
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process costly, since these tests are commonly performed without automatising the
process. Thus, automatic methods focusing on feature extraction and classification
of electrical signals are increasingly necessary for utilities [9–13].  Furthermore, it is
desirable that these methods, besides being automated, can handle large volumes
of  data in order to perform time detection of occurrence and classify various
disturbances related to PQ [14–17].

It  can be observed that various papers in the literature focus on the classification
of PQ disturbances. Considering this, the authors of [18] presented an approach for
automatic classification of PQ disturbances based on Wavelet Transform (WT) and
Support Vector Machines. However, it is worth mentioning that a segmentation
process was  used before the feature extraction and classification stages. In [19], the
main contribution is a fast variant of the discrete S-Transform to detect, segment
and extract features of synthetic signals. Therefore, a decision tree classifier was
used to identify the PQ disturbances.

The paper made reference to in [20] presents segmentation pre-processing
based on WT,  which is followed by a k-Means feature selection and a Support Vec-
tor Machine classifier. An integrated rule based approach of discrete WT with Fast
Fourier Transform is proposed by Deokar and Waghmare [21] for detection, feature
extraction and classification of PQ disturbances, considering noiseless and noise
conditions.

A  detailed review of detection and classification of PQ disturbances is presented
in [22]. According to the authors, the segmentation process can be divided into sta-
tionary and non-stationary parts. Due to the disturbances located between transition
segments, a triggering method is required to obtain the start and end time instants.
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Moreover, the authors comment that the segmentation methods can be divided into
parametric and non-parametric categories. Parametric category methods include
the  Kalman filter and Auto-regressive models. On the other hand, non-parametric
methods include Short-Term Fourier Transform and WT.

Taking this into account, it can be observed that the WT  has been used in various
areas of knowledge such as image compression, acoustic and mechanical vibration
[23–26]. This broad application is due to its ability to denoise and accurately detect
discontinuities and sharp changes in the signals under consideration. In view of
these characteristics, WT proves to be a valuable tool for feature extraction and
identification of power system disturbances [14–16]. Its success is also due to the
fact  that disturbances can be detected in the time-frequency domain for cases where
there are transient phenomena in power systems. This property provides support to
the WT for signal analysis containing disturbances that occur in the voltage, current
and/or frequency [3,27–29].

It is important to mention that there is still no consensus about the best Wavelets
family to identify electrical disturbances. However, many authors emphasize that
wavelets with the Daubechies filter banks operate properly to detect most distur-
bances [30–32].

An initial idea about an adaptive threshold methodology to detect and segment
PQ signals was introduced by de Andrade et al. [33]. This method was analyzed for
synthetic signal cases of only 6 single disturbances. However, this method needed
to  be analyzed in cases where there are flickers and notches, combined disturbances
and real signals (oscillograms) in order to verify its robustness. As can be seen from
the  results, the contribution of this paper is a complete analysis concerning the use
of  an adaptive threshold to perform PQ disturbance segmentation. This contribution
is  based on results obtained from analysing 8 synthetic signals with single distur-
bances (flicker, harmonics, impulsive transient, oscillatory transient, interruption,
sag, swell and notch), 6 synthetic signals with combined disturbances (sag with har-
monics, sag with flicker, swell with harmonics, swell with flicker, sag with oscillatory
transient and swell with oscillatory transient) and 6 real oscillograms (harmonics,
oscillatory transient, swell, interruption, impulsive transient and sag with oscilla-
tory transient). Additionally, a general analysis regarding the performance of the
adaptive threshold method for the case of all analysed signals is presented in the
results.

Considering what has been presented, the work in question is intended to define
a  threshold that is adaptive and allows the segmentation of electrical signals con-
taining disturbances. Thus, it is intended that this threshold is defined based on the
decomposition of electrical signals by DWT, using the Daubechies family filter banks
for  this purpose. For this threshold to be defined in an acceptable manner, first of all
the electrical signals generated containing synthetic disturbances were analyzed,
i.e.,  according to the parametric equations presented in [34]. Voltage sags, voltage
swells, voltage interruptions, transients, harmonic distortions, flickers and notches
are among the generated disturbances [31,35,34].

In  addition, synthetic signals of combined disturbances were also generated,
such as: voltage sag with flicker, voltage swell with flicker, voltage sag with har-
monics, voltage swell with harmonics, transient with voltage sag and transient with
voltage swell. After applying the proposed method for the segmentation of synthetic
signals, it was analysed for the case of real oscillograms, where the efficiency of the
procedure could also be observed, as shown later.

This paper is organized into five sections, which are as follows: in Section 2 some
theoretical aspects of WT are presented. Section 3 describes the estimation method
of  adaptive threshold in detail. In Section 4, the results for the segmentation of
signals are presented and discussed and, finally Section 5 presents the conclusions
and final comments about the research conducted so far.

2. Wavelet transform aspects

WT  has been widely used due to its most important property,
which is to examine a signal simultaneously in the time–frequency
domain. WT  emerged in the 1980s, however it only started being
used to solve engineering problems in the 1990s [36]. It should be
emphasized that WT  can be used in continuous or discrete modes.
Nevertheless, regarding the detection and classification of distur-
bances relating to PQ, it is usually applied in its discrete form, i.e.,
DWT [37,38]. The decomposition of a signal is illustrated in Fig. 1
so that the DWT  can be better understood.

Fig. 1 illustrates the decomposition of a discrete-time signal
(Original Signal), where its outputs are detail coefficients (Detail
1) and approximation (Approximation 1). In turn, the approxima-
tion coefficients store information regarding the low frequency
components, while the detail coefficients store the high frequency
information. This decomposition procedure can be repeated until
the maximum level of decompositions is reached, i.e., there is only
approximation and detail leaves containing just one coefficient.
It is also worth mentioning that this procedure is performed by

Fig. 1. Illustrative example of DWT  decomposition.

applying a downsampling of 2, i.e., the signal is divided by two
until the maximum level of decomposition is achieved. For this
reason, it is desirable that the original signal to be decomposed
is sampled by a power of 2 (number of points). At the end of the
decomposition, either to the maximum degree of decomposition or
otherwise, there is a wavelet decomposition tree, with two leaves
at each level, one of detail and the other one of approximation,
including their respective coefficients. As shown in Fig. 1, decom-
position starts from level 1 to level N, where the denoised signal is
decomposed into other levels from the approximation coefficient
leaf. As shown in Fig. 1, the number of leaf samples of the level to be
generated is half of the coefficients of its previous leaf. This process
leads to a decrease in resolution in the time domain. However,
there is an increase in the resolution of the frequency domain. This
resolution increase is favorable for detecting discontinuities in the
signals, so that PQ disturbances can be identified.

3. Wavelet-based adaptive threshold

For a consistent determination of the adaptive threshold, a
database was generated, composed of 1400 disturbances patterns,
which were divided into 800 individual disturbance patterns (volt-
age sag, voltage swell, voltage interruption, transients, harmonic
distortion, flicker and notch) and 600 combined disturbance pat-
terns (voltage sag with flicker, voltage swell with flicker, voltage
sag with harmonics, voltage swell with harmonics, transient with
voltage swell and transient with voltage sag).

Each of the patterns takes into account parameters such as
duration, amplitude and location of disturbances, randomly deter-
mined, but in accordance with the limits indicated in the related
literature [39].

Thus, for each of the analyzed patterns, an adaptive threshold
was calculated based on the signal energy and entropy of energy for
its best adjustment and to enable segmentation in order to identify
the segments containing disturbances.

Whereas the total energy (ET) is the quadratic sum of each com-
ponent of each decomposed detail leaf (Ej) the percentage of energy
can be obtained by Eq. (1) [40]:

ET (%) = Energy =
N∑

j=1

(Ej)
2 × 100. (1)

The entropy of a given energy level of decomposition can be
obtained according to Eq. (2) [40]:

WEE  = Entropy = −
N∑

j=1

(
Ej

ET
× log

Ej

ET

)
. (2)

Eq. (3) was empirically determined (based on the threshold
behavior for the 1400 analyzed patterns), according to Eqs. (1) and
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