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Given a set P of terminals in the plane and a partition of P into k subsets P1, . . . , Pk , 
a two-level rectilinear Steiner tree consists of a rectilinear Steiner tree Ti connecting 
the terminals in each set Pi (i = 1, . . . , k) and a top-level tree Ttop connecting the trees 
T1, . . . , Tk . The goal is to minimize the total length of all trees. This problem arises 
naturally in the design of low-power physical implementations of parity functions on a 
computer chip.
For bounded k we present a polynomial time approximation scheme (PTAS) that is based 
on Arora’s PTAS for rectilinear Steiner trees after lifting each partition into an extra 
dimension.
For the general case we propose an algorithm that predetermines a connection point for 
each Ti and Ttop (i = 1, . . . , k). Then, we apply any approximation algorithm for minimum 
rectilinear Steiner trees in the plane to compute each Ti and Ttop independently.
This gives us a 2.37-factor approximation with a running time of O(|P | log |P |) suitable for 
fast practical computations. The approximation factor reduces to 1.63 by applying Arora’s 
approximation scheme in the plane.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We consider the two-level rectilinear Steiner tree problem (R2STP) that arises from an application in VLSI design. Consider 
the computation of a parity function of k input bits using 2-input XOR-gates. Due to the symmetry, associativity, and 
commutativity of the XOR function, this can be realized by an arbitrary binary tree with k leaves, rooted at the output, 
by inserting an XOR-gate at every internal vertex (see Xiang et al. [16,17]). Throughout this paper we consider the parity 
function as a placeholder for any fan-in function of the type x1 ◦ x2 ◦ · · · ◦ xk , where ◦ is a symmetric, associative, and 
commutative 2-input operator, i.e. ◦ ∈ {⊕, ∨, ∧}.

On a chip such a tree has to be embedded into the plane and all connections must be realized by rectilinear segments. 
If each input and the output are single points on the chip, a realization of minimum length and, thus, power consumption 
is given by a minimum length rectilinear Steiner tree. This is a tree connecting the inputs and the output by horizontal 
and vertical line segments using additional so-called Steiner vertices to achieve a shorter length than a minimum spanning 
tree. At each Steiner vertex of degree three an XOR-gate is placed. Higher degree vertices can be dissolved into degree three 
vertices sharing their position. Fig. 1 shows an example of an embedded parity function on the left.

In practice, input signals may be needed for other computations on the chip and, thus, delivered to other side outputs. 
Similarly, the result may have to be delivered to multiple output terminals. Thus, each input and its successors and the 
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Fig. 1. On the left, we have two inputs p1 and p2 and a single output p3. The XOR-gate should be placed at the median of the three terminals. If the inputs 
have the side outputs p′

1 and p′
2, the XOR-gate should be placed at p3, saving the horizontal length.

output terminals must be connected by separate Steiner trees as well. These trees are then connected by a top-level Steiner 
tree into which the XOR-gates will be inserted. Considering the additional terminals allows to construct a potentially shorter 
top-level and two-level Steiner tree as shown in Fig. 1 on the right. Algorithms ignoring the side outputs cannot guarantee 
an approximation factor better than two, as we will see in Section 2.

This motivates the definition of the minimum two-level rectilinear Steiner tree problem, where we are given a set P ⊂ R
2 of 

n terminals and a partition of P into k subsets P1, . . . , Pk .
A two-level rectilinear Steiner tree T = (Ttop, T1, . . . , Tk) consists of a Steiner tree Ti for each i ∈ {1, . . . , k} connecting the 

terminals in Pi and a (group) Steiner tree Ttop connecting the embedded trees {T1, . . . , Tk}. We call Ttop the top-level tree. 
Note that all trees are allowed to cross. The objective is to minimize the total length of all trees

l(T ) :=
k∑

i=1

l(Ti) + l(Ttop),

where l(T ′) := ∑
{x,y}∈E(T ′) ‖x − y‖1 is the �1-length of a Steiner tree T ′ .

For each i ∈ {1, . . . , k} the top-level tree and Ti intersect in at least one point. We can select one such point qi ∈ Ttop ∩ Ti
and call it connection point for Ti and Ttop . Then Ttop is a Steiner tree for the terminals {q1, . . . , qk} and each Ti is a Steiner 
tree for Pi ∪ {qi}.

For a compact set Q ⊂ R
d , we denote by B(Q ) the (minimum axis-parallel) bounding box containing Q and by l(B(Q ))

the bounding box length of Q , i.e. the sum of widths of B(Q ) over all d dimensions. Using the following simple observation, 
we can always assume that connection points are located in the bounding box of their partition: qi ∈ B(Pi) (1 ≤ i ≤ k).

Observation 1.1. Given a two-level Steiner tree T = (Ttop, T1, . . . , Tk) for P1, . . . , Pk, we can always find a two-level Steiner tree 
T ′ = (T ′

top, T ′
1, . . . , T

′
k) for P1, . . . , Pk and connection points q′

i ∈ B(Pi) so that l(T ′) ≤ l(T ) and l(T ′
i ) ≤ l(Ti) for all i = 1, . . . , k.

Proof. Consider a tree Ti , i ∈ {1, . . . , k}, for which qi /∈ B(Pi). We insert a new vertex q′
i into Ti at the same position as qi , 

reconnect vertices in V (Ti) that are adjacent to qi to q′
i , and add a new edge {qi, q′

i}. Furthermore, we subdivide any edge 
{v, w} ∈ E(Ti) crossing the boundary ∂ B(Pi), by a new vertex placed in the intersection B({v, w}) ∩ ∂ B(Pi) (if an edge 
is crossing two edges of ∂ B({v, w}), it will be subdivided twice). This does not alter any tree length. Now, we project all 
vertices of Ti −qi which are not inside the bounding box B(Pi) to the closest point on its boundary. Thereby, q′

i is relocated 
to the boundary of B(Pi) with minimum distance to qi . The length of Ti does not increase, because the total length of the 
edges incident to projected vertices must have been attained at least by the edges outside B(Pi) before the projection.

Finally, let q′
i be the new connection point, T ′

top = Ttop + {qi, q′
i}, and T ′

i = Ti − {qi, q′
i}. This results in a solution T ′ with 

l(T ′) ≤ l(T ) and l(T ′
i ) ≤ l(Ti). �

Obviously, the rectilinear two-level Steiner tree problem is NP-hard as it contains the minimum rectilinear Steiner tree 
problem in two ways: if k = 1 or if |Pi| = 1 for i ∈ {1, . . . , k}. The problem is NP-complete, because there is always an 
optimum solution in the Hanan grid [9] of P . This simple fact will arise later as a side-result in Corollaries 3.1 and 3.2.

Designing the top-level tree as a stand-alone problem is hard. If all subtrees Ti (i ∈ {1, . . . , k}) are fixed, Ttop cannot be 
approximated to arbitrary quality, as the group Steiner tree problem for connected groups in the Euclidean plane cannot be 
approximated within a factor of (2 − ε) due to Safra and Schwartz [12]. However, we are in a more lucky situation as we 
can tradeoff the lengths of bottom-level and top-level trees.

To the best of our knowledge the two-level rectilinear Steiner tree problem has not been considered before despite its 
practical importance [16,17]. It is, however, a specialization of the clustered Steiner tree problem introduced by Wu and 
Lin [15]. Here, a solution consists of a Steiner tree T for P that contains a subtree Ti connecting Pi for each i = 1, . . . , k, 
where all k subtrees are pairwise disjoint. Wu and Lin present an (α + 2)-factor approximation algorithm for the clustered 
Steiner tree problem in metric spaces, given an α-factor approximation for the Steiner tree problem. A two-level Steiner 
tree is a clustered Steiner tree but not vice versa, as a connected top-level tree need not exist in clustered Steiner trees. 
Thus, approximation results cannot be transferred easily. The two-level Steiner tree problem is also loosely related to the 
hierarchical network design problems studied by Alvarez-Miranda et al. [1], Balakrishnan, Magnanti, and Mirchandani [4], 
and Current, ReVelle, and Cohon [7]. There is also some similarity to multi-level facility location problems studied by 
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