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a b s t r a c t

The grouped independence Metropolis–Hastings (GIMH) and Markov chain within
Metropolis (MCWM) algorithms are pseudo-marginal methods used to perform Bayesian
inference in latent variable models. These methods replace intractable likelihood calcula-
tions with unbiased estimates within Markov chain Monte Carlo algorithms. The GIMH
method has the posterior of interest as its limiting distribution, but suffers from poor
mixing if it is too computationally intensive to obtain high-precision likelihood estimates.
TheMCWMalgorithmhas bettermixing properties, but tends to give conservative approxi-
mations of the posterior and is still expensive. A newmethod is developed to accelerate the
GIMH method by using a Gaussian process (GP) approximation to the log-likelihood and
train this GP using a short pilot run of the MCWM algorithm. This new method called GP-
GIMH is illustrated on simulateddata froma stochastic volatility and a genenetworkmodel.
The new approach produces reasonable posterior approximations in these examples with
at least an order of magnitude improvement in computing time. Code to implement
the method for the gene network example can be found at http://www.runmycode.org/
companion/view/2663.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Bayesian inference for high-dimensional latent variablemodels is currently challenging. In particularMarkov chainMonte
Carlo (MCMC) samplers can suffer from poor mixing due to correlation between the parameter of interest and the latent
variables. Beaumont (2003) and Andrieu and Roberts (2009) have introduced pseudo-marginal methods to improve the
statistical efficiency ofMCMC. Thesemethodswork by replacing the actual likelihoodwith an unbiased likelihood estimate in
theMetropolis–Hastings ratio. This allows proposals for the Markov chain to bemade directly on the space of the parameter
of interest, rather than conditional on the value of a set of the latent variables.

One of these methods, the grouped independence Metropolis–Hastings (GIMH) method by Beaumont (2003), recycles
the likelihood estimate for the current value of the chain to the next iteration. Andrieu and Roberts (2009) have shown that
the GIMH method has the desired posterior as its limiting distribution, which is why it has received considerable attention
in the literature (Andrieu et al., 2010; Doucet et al., 2015). However, a drawback of the GIMH method is that it can suffer
from poor mixing if it is too computationally expensive to estimate the likelihood with high precision.
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The other method, the Markov chain within Metropolis (MCWM, Beaumont, 2003) algorithm, estimates the likelihood at
both the current and proposed values of the Markov chain at every iteration. This method generally possesses better mixing
properties as it is able to escape an overestimated likelihood value by re-estimating it at the next MCMC iteration. However,
the MCWMmethod does not have the posterior distribution of the parameter of interest as its limiting distribution. Because
of this, MCWM has received comparatively less attention.

In this paper we make use of a Gaussian process (GP) to accelerate the GIMH method while at the same time accepting
some approximation to the posterior distribution.

Wilkinson (2014) proposes that GPs be used to accelerate approximate Bayesian computation (ABC) methods where the
likelihood is approximated by generating manymodel simulations from each proposed parameter value, andmeasuring the
distance between observed and simulated data through a careful choice of summary statistics. Here GPs are used to emulate
the actual (ABC) log-likelihood surface based on noisy estimates obtained through simulation. The method iteratively uses
the GP to discard implausible parts of the parameter space, re-trains the GP in the updated not-implausible part of the
parameter space and continues this process until the GP fit has been deemed as satisfactory. The final GP is then used within
anMCMCmethod to predict the log-likelihood surface at all proposed values of the parameter of interest. GPs have also been
used for ABC by Meeds and Welling (2014), Gutmann and Corander (2016) and Järvenpää et al. (2016).

We follow a similar approach to Wilkinson (2014) to accelerate pseudo-marginal methods. However, one key difference
is that we take advantage of the pseudo-marginal literature. In particular, we use a short run of the MCWM method as
a natural approach to obtain training samples for the GP in non-negligible regions of the posterior support. The MCWM
method is ideal for training the GP as it has better mixing properties and is less prone to sticky periods than the GIMH
method. Medina-Aguayo et al. (2016) develop sufficient conditions for the geometric ergodicity and hence the existence
of an invariant distribution of MCWM. Our experience with MCWM is that it is generally conservative (inflated posterior
variance), allowing the tails of the posterior to be explored. The fitted GP is used instead of expensive likelihood estimates
within the GIMH method. We introduce further novelties into our method to make it practically useful.

The paper has the following outline. In Sections 2.1 and 2.2 we provide a brief overview of pseudo-marginal methods and
GPs, respectively. In Section 2.3 we present our new method, GP-GIMH, which uses the MCWM algorithm to train the GP
and subsequently uses the GP to accelerate the GIMH method. Finally, in Section 4, we conclude with a discussion.

2. Accelerated pseudo-marginal MCMC

In this section we give some background on pseudo-marginal MCMCmethods and Gaussian processes before describing
how, by emulating the log-likelihood using a GP, we can accelerate pseudo-marginal MCMC.

2.1. Pseudo-marginal MCMC

Suppose we have observed data y in Y which is described by a statistical model with likelihood function p(y|θ) and
depends on an unknown parameter θ in Rd. Prior beliefs about the parameter are summarised by the prior density p(θ).
We assume that the model requires, or is facilitated by, an auxiliary variable x in X, whose value is not of direct interest.
In this scenario the complete data likelihood is p(y, x|θ) = p(y|x, θ)p(x|θ) and leads to the observed data likelihood
p(y|θ) =

∫
X p(y|x, θ)p(x|θ)dx. Ideally this observed data likelihood is combined with the prior to make inferences about

the parameters via the posterior density p(θ|y) ∝ p(y|θ)p(θ). However, in non-toy problems the observed data likelihood is
an analytically intractable integral. Therefore the parameter posterior is accessed as the marginal of the joint posterior for
all unknowns, that is, via p(θ|y) =

∫
X p(θ, x|y)dx.

A standard Bayesian approach for fitting such a latent variable model is to develop an MCMC algorithm that samples the
joint posterior p(θ, x|y) and marginalises by ignoring the x samples. A common approach is to develop an MCMC algorithm
using two blocks, θ and x, that iteratively samples from the full conditionals p(θ|x, y) and p(x|θ, y). A key problem with
such algorithms is that they can mix poorly because of high posterior correlation between the blocks θ and x. Further, for
non-trivial state space models, p(x|θ, y) cannot be sampled directly and is difficult to sample efficiently (see Andrieu et
al., 2010 for a discussion). In an attempt to overcome the mixing issue, Beaumont (2003) develops algorithms that replace
the computationally intractable likelihood p(y|θ) with an unbiased estimate p̂(y|θ). The underpinning mathematics of these
pseudo-marginal MCMC algorithms is studied in Andrieu and Roberts (2009) and they develop conditions under which they
indeedhave the correct posterior distribution p(θ|y) as their limiting distribution. A simple example of anunbiased likelihood
estimate is one obtained through importance sampling, namely

p̂(y|θ) =
1
N

N∑
i=1

p(y|xi, θ)p(xi|θ)
g(xi)

,

where x1, . . . , xN
i.i.d
∼ g(x) and g is an importance density defined on X. Alternative approaches to obtaining an unbiased

likelihood estimate are available. For example, Andrieu et al. (2010) show that when the model of interest is a state-space
model, the likelihood p(y|θ) can be estimated unbiasedly using a particle filter with N particles. Such pseudo-marginal
methods are referred to as particle Markov chain Monte Carlo (PMCMC). We consider models in the state-space form in
Section 3 and use the bootstrap particle filter of Gordon et al. (1993) to obtain an unbiased likelihood estimator.
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