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a b s t r a c t

Regarding semiparametric quantile regression, the existing literature is largely focused on
independent observations. A time-varying quantile single-index model suitable for com-
plex data is proposed, in which the responses and covariates are longitudinal/functional,
with measurements taken at discrete time points. A statistic for testing whether the time
effect is significant is developed. The proposed methodology is illustrated using Monte
Carlo simulation and empirical data analysis.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Single-index models (SIMs) provide an efficient means of coping with high-dimensional nonparametric estimation
problems (Haerdle et al., 1993; Yu andRuppert, 2002) and avoiding the ‘‘curse of dimensionality’’ in nonparametric problems
by assuming that the response is only related to a single linear combination of the covariates. The fitting of SIMs, commonly
based on splines or kernel methods, is widely applied in the literature. Nevertheless, efficient and stable estimation of SIMs
remains a challenging problem that has inspired many recent works in this area (Wang and Yang, 2009; Bai et al., 2009;
Wang et al., 2010; Li et al., 2010; Liang et al., 2010; Choi et al., 2011; Gramacy and Lian, 2012).

However, the restriction of these works on mean regression, that is, on estimating the conditional mean regression
function, may be a limitation. As a useful supplement tomean regression, quantile regression (Koenker and Bassett Jr, 1978;
Koenker, 2005) produces a more complete description of the conditional response distribution and is more robust to heavy-
tailed random errors. In particular, quantile regression can uncover different structural relationships between covariates
and responses at the upper or lower tails, and these relationships are occasionally of significant interest in econometrics
and biomedical applications. This interest inspired a series of works on quantile SIMs recently (Wu et al., 2010; Kong
and Xia, 2012). Another importance piece of work is Ma and He (2016) which considered quantile SIM using splines and
demonstrated the effectiveness of the profiled approach.

Quantile SIMs assume that Qy|x(τ ) = g(xTβ(τ )), where Qy|x denotes the conditional τ -th quantile of a response y, g is an
unknown link function, x = (x1, . . . , xp)T is the covariate vector, andβ(τ ) is the index parameter that depends on the quantile
level τ ∈ (0, 1), but we omit this dependence in our notations in the following. The aforementioned studies are appropriate
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for cross-sectional data in which the observations are assumed independent. To deal with data involving subjects that are
repeatedly measured at different time points, a straightforward extension without additional efforts is considering models
of the form Qy(t)|x(t)(τ ) = g(xT(t)β). However, in this form, the effect of time on the response is only through the values of
the predictors at that time because the link function is time independent. This can be too restrictive in certain applications.
Our objective is to extend the quantile SIMs to longitudinal/functional data using the following model structure:

Qy(t)|x(t)(τ ) = g(xT(t)β, t).

This specification allows for longitudinal data with both responses and covariates depending on the time variable. More
importantly, the effect of the index x(t)Tβ can be time varying through the bivariate link function g , which also depends on
time. Such structure was previously attempted for mean regression in Jiang and Wang (2011).

The price to pay for a flexible time-varyingmodel structure is that it loses efficiencywhen the effect of the index is actually
not time varying. Thus, for data analysis, a hypothesis test should be conducted to determine whether the time effect is
significant. If the test do not reject the null hypothesis that the link function is time independent, then a non-time-varying
model can be refitted. We propose a rank score test for this purpose.

The rest of the article is organized as follows. Section 2.1 considers the model and estimation for the time-varying single-
index quantile regression, and Section 2.2 establishes the asymptotic properties. Section 3 tests whether the link function is
time varying. Section 4 presents specific Monte Carlo studies and Section 5 contains an empirical analysis of the AIDS data.
Section 6 concludes with a discussion. Appendix contains all of the technical proof details.

2. Time-varying quantile single-index models

2.1. Model and estimation

In longitudinal data setting, the responses are observed at discrete time points. Assuming for the ith subject, 1 ≤ i ≤ n,
we make observations at time points tij, j = 1, . . . ,mi, the dynamic semiparametric quantile regression model is written as

yij = g(xijTβ, tij) + eij,

where yij = y(tij) is the response, xij = x(tij) is the p-dimensional covariates, g is an unknown bivariate link function, and eij
satisfies P(eij ≤ 0|xij) = τ . For identifiability, we assume ∥β∥ = 1 and its first component is positive. We use β0 to denote
the true value of β and use simply g (without subscript 0) to denote the true link function.

To take into account the unit norm constraint, we use the popular ‘‘delete-one-component’’ method (Yu and Ruppert,
2002; Cui et al., 2011). We can write β = ((1− ∥β(−1)

∥
2)1/2, β2, . . . , βp)T , where β(−1)

= (β2, . . . , βp)T is β without the first
component. Thus, β is a function of β(−1). The p × (p − 1) Jacobian matrix is

J =
∂β

∂β(−1) =

⎛⎝−
β(−1)

(1 − ∥β(−1)
∥2)1/2

Ip−1

⎞⎠ ,

where Ip−1 is the (p − 1) × (p − 1) identity matrix. In the rest of the paper, J is always evaluated at the true β0.
Assuming xijTβ is supported on [a, b] (in practice, given a current estimate of β, we can set a and b as the minimum

and maximum values of xijTβ, respectively), we use polynomial splines to approximate the link function. Let τ0 = a < τ1 <
· · · < τk′1

< b = τk′1+1 be a partition of [a, b] into subintervals [τl, τl+1), l = 0, . . . , k′

1 with k′

1 internal knots.We only restrict
our attention to equally spaced knots although data-driven choice can be considered such as putting knots at certain sample
quantiles of the observed covariate values. A polynomial spline of order s1 is a function whose restriction to each subinterval
is a polynomial of degree s1−1 and globally s1−2 times continuously differentiable on [a, b]. The collection of splines with a
fixed sequence of knots forms a B-spline basis b1(x) = {b1,1(x), . . . , b1,k1 (x)} with k1 = k′

1 + s1. Similarly, assuming, without
loss of generality, that tij is supported on [0, 1], we can construct B-spline basis b2(t) = {b2,1(t), . . . , b2,k2 (t)}. We assume
B-spline basis is normalized such that

∑k1
l=1b1,l(x) =

√
k1 and

∑k2
l=1b2,l(x) =

√
k2. Such normalization is unessential and is

only imposed to simplify certain expressions in theoretical derivations later. Finally, for a bivariate function supported on
[a, b] × [0, 1], we construct the tensor basis b(x, t) = (b1(x, t), . . . , bk(x, t)) = (b1,1(x)b2,1(t), . . . , b1,k1 (x)b2,k2 (t)), where
k = k1k2.

Using spline approximation, writing g ≈ bTθ, we minimize

l
(
β(−1), θ

)
=

n∑
i=1

mi∑
j=1

ρτ (yij − bT(xTijβ, tij)θ), (1)

over β and θ with the constraint ∥β∥ = 1, or equivalently regard β = β(β(−1)) as a function of β(−1) and optimize over
(β(−1), θ).

An important property regarding splines used in the proof is that thematrix {
∫
b2,l(t)b2,l′ (t)dt}

k2
l,l′=1 possesses eigenvalues

bounded and bounded away from zero under our particular normalization for basis functions. Although unnecessary for
estimation, setting b2,1(t) ≡ 1 is convenient for the testing problem considered in Section 3. Note that since originally we
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