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a b s t r a c t

In this paper, we focus on the partially linear varying-coefficient quantile regressionmodel
when the data are right censored and the censoring indicator is missing at random. Based
on the calibration and imputationmethods, a three-stage approach is proposed to construct
the estimators of the linear part and the nonparametric varying-coefficient function for this
model . At the same time, we discuss the variable selection of the covariates in the linear
part by adopting adaptive LASSO penalty. Under appropriate assumptions, the asymptotic
normality of the proposed estimators is established, and the penalized estimators are
proven to have the oracle property. Simulation study and a real data analysis are conducted
to evaluate the performance of the proposed estimators.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Flexible and refined statistical models are widely sought in a large array of statistical problems. Partially linear varying-
coefficient (PLVC) model, as a combination of the partially linear model and varying-coefficient model, has drawn much
attention of many researchers, and various methods have been proposed to estimate its parametric part and nonparametric
function. See Zhang et al. (2002), Ahmad et al. (2005), Lam and Fan (2008), among others.

Most existing estimation methods for the PLVC model focus on mean regression by least squares or likelihood method.
However they are sensitive to outliers and may be inefficient for many non-normal errors. The quantile regression (QR)
introduced by Koenker and Bassett (1978) is more robust in exploring the underlying relationship between the covariates
and the response. We refer to Koenker (2005) for a comprehensive overview of the QR. Some authors have discussed the
PLVC QRmodel. Wang et al. (2009) used B-spline basis functions to define estimator of the QR with longitudinal data; Kai et
al. (2011) proposed a novel three-stage estimation procedure and studied variable selection; Cai and Xiao (2012) discussed
the QR in dynamic models with time series.

In many applications, especially in survival analysis and biomedical studies, the response cannot be completely observed
due to possible right censoring, such as withdrawal of patients from the study, or death from a cause unrelated to the
disease of being studied. Based on the linear model, the censored QR was first studied by Powell (1986) for the case of fixed
censoring that assumes known censoring time for all observations. For the random right-censored model, Ying et al. (1995)
proposed a semi-parametric procedure for median regression model, Portnoy (2003) developed a recursively reweighted
estimation of the QR by the classical Kaplan–Meier estimator, Wang andWang (2009) proposed a locally weighted censored
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QR approach that adopts the redistribution of mass idea and employs a local reweighting scheme, and Leng and Tong (2013)
proposed a QR estimator through an unbiased estimating equation. Based on the varying-coefficient model, Yin et al. (2014)
proposed a QRmodel and estimated regression parameters by generalizedmethod ofmoments, and Xie et al. (2015) adopted
a weighted inverse probability approach to develop the QR estimation. Furthermore, the censoring indicator may not be
observed completely in practice. For instance, as described by Wang and Shen (2008), in clinical trials, individuals may fail
from one of multiple causes, one of which is of interest. The time to death from the cause of interest may be censored by
a death from a different cause. However, cause of death may sometimes be unavailable, for example: whether the death is
attributable to the cause of interestmay require information that is not collected or lost, or itmay be difficult to determine the
cause for some patients. In such cases, some censoring indicators are missing. In this paper, we assume that the censoring
indicator is missing at random (MAR). The MAR assumption is common in statistical analysis involving missing data and
is reasonable in many practical situations. See Little and Rubin (1987). Some authors have discussed the QR with random
missing data. Yi and He (2009) investigated the linear QR model with missing response, and Sherwood et al. (2013) and
Yang and Liu (2014) studied the linear QR model with missing covariates. For the varying-coefficient model with missing
covariates, Sun and Sun (2015) studied the QR, Tang and Zhou (2015) studied the composite QR. For the right-censored
data with missing censoring indicator, Subramanian (2004) and Wang and Ng (2008) suggested different estimators of the
survival function, Song et al. (2010) and Qiu et al. (2015) discussed additive hazards regression model, and Wang and Dinse
(2011) and Li and Wang (2012) proposed weighted least squared estimators for linear mean regression model. However
there is no literature studying the PLVC QR model with censoring indicator MAR so far.

In addition, it is well known that variable selection for predictors has drawn the attention of many researchers. Various
powerful penalizationmethods have been developed for the variable selection, such as LASSO (Tibshiranit, 1996), SCAD (Fan
and Li, 2001), adaptive LASSO (Zou, 2006), and so on. Recently, the effective variable selection procedure has been developed
for the PLVC model, for instance, under the complete data setting, Li and Liang (2008) proposed the nonconcave penalized
quasi-likelihoodmethod for variable selection in the PLVCmean regressionmodel, andKai et al. (2011) discussed the variable
selection for the PLVC composite QR model. However there is little research for the variable selection of the PLVC QR model
related to the right censored data with censoring indicator MAR.

In this paper, we focus on the PLVC QR model when the data are right censored and the censoring indicator is MAR.
Using calibration and imputation methods, we suggest a three-stage approach to estimate both parameters of the linear
part and the functions of the nonparametric varying-coefficient part in the model. Furthermore, when the covariates in the
linear part are high-dimensional, we construct the penalized estimators by applying adaptive LASSO penalty, and study the
variable selection of themodel. A simulation study and a real data analysis are conducted to evaluate the performance of the
proposed estimators.

The rest of the paper is organized as follows. In Section 2, a three-stage approach is proposed to construct the estimators
in the PLVC QRmodel with the censoring indicator MAR, and the penalized estimators of the parameter in the linear part by
applying adaptive LASSO penalty are also discussed. Main results are described in Section 3. Numerical study is presented
in Section 4. The proofs of main results are given in Section 5.

2. Methodology

Consider the following partially linear varying-coefficient QR model

Ti = XT
i βτ + ZT

i ατ (Ui) + εi, i = 1, 2, . . . , n, (2.1)

where Ti is the response variable, Xi ∈ Rp, Zi ∈ Rq and Ui ∈ R are the explanatory variables, βτ = (bτ1, bτ2, . . . , bτp)T is
an unknown p-dimensional parameter vector, ατ (·) = (ατ1(·), ατ2(·), . . . , ατq(·))T is an unknown q-dimensional coefficient
function vector, and εi is the random error whose τ th quantile on Wi = (Xi, Zi,Ui) equals zero for τ ∈ (0, 1). Let QTi (τ |Wi)
be the condition quantile of Ti givenWi, then

QTi (τ |Wi) = argmin
a

E
{
ρτ (Ti − a)|Wi

}
,

where ρτ (t) = t[τ − I(t < 0)] is called the check loss function. Model (2.1) indicates that

QTi (τ |Wi) = XT
i βτ + ZT

i ατ (Ui). (2.2)

In practice, Ti may be right censored due to some reasons. Let Ci be the censoring time with distribution function G(·),
and Yi = min(Ti, Ci), δi = I(Ti ≤ Ci). Define a missing indicator ξi, which is 0 if δi is missing and is 1, otherwise. Then one
can observe an i.i.d. sample {Yi,Wi, δiξi, ξi, 1 ≤ i ≤ n} from (Y ,W , δξ, ξ ). Suppose that Ti is independent of Ci, and that δi is
MAR, which implies that ξi and δi are conditionally independent given (Yi,Wi), i.e., P(ξi = 1|Yi,Wi, δi) = P(ξi = 1|Yi,Wi) :=

∆(Yi,Wi).
Under the presence of censoring, since Ti is independent of Ci, we have

E
{ δi

1 − G(Yi)
ρτ (Yi − a)|Wi

}
= E

{
ρτ (Ti − a)|Wi

}
.
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