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a b s t r a c t

One typical problem in simultaneous estimation of mean values is estimating means of
normal distributions, however when normality or any other distribution is not specified,
more robust estimation procedures are demanded. A new estimation procedure is pro-
posed based on empirical likelihood which does not request any specific distributional
assumption. The new idea is based on incorporating empirical likelihood with general
maximum likelihood estimation. One well-known nonparametric estimator, the linear
empirical Bayes estimator, can be interpreted as an estimator based on empirical likelihood
under some framework and it is shown that the proposed procedure can improve the
linear empirical Bayes estimator. Numerical studies are presented to compare the proposed
estimator with some existing estimators. The proposed estimator is applied to the problem
of estimatingmean values corresponding to high valued observations. Simulations and real
data example of gene expression are provided.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

When there is (X1, . . . , Xn) where Xi ∼ f (x|θi), simultaneous estimation of parameter vector (θ1, . . . , θn) has been
considered by many researchers through the compound decision theory. θis are deterministic sequences and one main
interest is to obtain an estimate of θ = (θ1, . . . , θn), say θ̂ = (θ̂1, . . . , θ̂n), with small risk

R(θ) =

k∑
i=1

E(θ̂i − θi)2 (1)

based on an observational vector (X1, . . . , Xn). This is known as a compound decision problem.
In the framework of empirical Bayes estimation, (Xi, θi)’s are independent and identical samples where Xi|θi ∼ f (x|θi) and

θi ∼ G(θ ) for an unknown G. For any estimator δ, the Bayes rule (say δ∗(X)) is an estimator minimizing E(δ(X)− θ )2 which is
obtained from δ∗(x) = argminδE[(δ(X) − θ )2|X = x]. The compound decision problem can be considered as a specific case
of the empirical Bayes estimation if G(θ ) =

1
n

∑n
i=1I(θi ≤ θ ) is an empirical distribution of (θ1, . . . , θn).

There are typical examples such as estimating mean vector for normal distributions and that of Poisson distributions. In
estimation of mean vector, there are numerous literatures on themean vector estimation when the distribution of x given θ ,
f (x|θ ), has the form of parametric distribution. More specifically, Xi ∼ f (x|θi) for 1 ≤ i ≤ n and estimate (θ1, . . . , θn) based
on (X1, . . . , Xn) under square loss function. Under the normality of Xi given θi, Johnstone and Silverman (2004) used the
empirical Bayes estimator for specific prior distributions on θis, Brown and Greenshtein (2009) used the idea of smoothing
in the nonparametric empirical Bayes estimator, Jiang and Zhang (2009) showed some optimality of estimator for the
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Bayes estimator based on general maximum likelihood estimator (GMLE) and Park (2014) used the shrinkage estimator
from conditional maximum likelihood estimation under normality. All these methods assume that data are generated
from f (x|θ ) = φ(x − θ ) where φ is the density function of a standard normal distribution. Additionally, there are some
nonparametric estimators which do not request any specific form of f (x|θ ) such as hard or soft shrinkage estimators in
Donoho and Johnstone (1994, 1995). Furthermore, Robbins (1983, 1985) proposed the linear empirical Bayes (LEB) estimator
which depends on somemoment conditions. Under the situation that the conditional variance is constant, the LEB estimator
is the variant of the James–Stein’s estimator in James and Stein (1961). All these nonparametric approaches do not request
any specific form of f (x|θ ), however their performances are very sensitive to the configuration of (θ1, . . . , θn) in compound
decision problem and G in the empirical Bayes problem. For example, the hard and soft shrinkage estimators are efficient
when there are some structural assumption on mean vector such as sparsity. Under the Bayesian framework, the LEB
estimator is derived when the prior G is assumed to be the normal distribution. This may lead to poor performances of the
LEB estimator when the true G has more than one mode. This phenomenon will be demonstrated later through simulations.

All existing methods either assume f (x|θ ) is known or suffer from the sensitivity to the structure of θs (or G). To avoid
these, we propose to use the empirical likelihood (EL) estimation which does not request the specific form of f (x|θ ) and use
the General maximum likelihood estimation (GMLE) to estimate G. In the context of the empirical likelihood estimation, it
is commonly assumed that Xi’s are i.i.d. samples from some unknown distribution and one main interest is to estimate a
common mean, say θ0, and then test the hypothesis of H0 : θ0 = 0. Our problem is different from the classical empirical
likelihood estimation problem in the sense that Xi’s are independent, but not identical since θis can be different in our setting.

Throughout this paper, we propose a new method which assume that none of f (x|θ ) and G are known. Our proposed
estimator is based on the quadratic optimization with moment constraints. We shall show that the linear empirical Bayes
(LEB) estimator is understood under our framework, however the LEB estimator is actually obtained without considering all
given constraints. We present theoretical relationship between our estimator and the LEB estimator and show advantage of
our proposed estimator over existing estimators through numerical studies.

This paper is organized as follows. In Section 2, we provide a brief review on the estimation ofmean vector estimation and
propose a new approach to estimatemean vector based on empirical likelihood and generalmaximum likelihood estimation.
We also provide some relationship between our proposed procedure and some existing estimator. We present numerical
studies for comparison in Section 3. In Section 4, we apply our idea to estimate the mean values corresponding to high
valued observations and Section 5 shows a real example of gene expression data. Some concluding remarks are presented
in Section 6.

2. Estimator based on empirical likelihood and general maximum likelihood

Suppose we have (X1, . . . , Xn) and Xi ∼ f (x|θi) for a given θi where θi ∼ G(·). Here, both f (x|θ ) and G are unknown in
our context while most of estimation problems are based on known f (x|θ ) except nonparametric estimators such as the LEB
estimator and hard/soft estimators. Our goal is to estimate θi = E(Xi|θi) with onlymoment conditions such as Var(Xi|θi) = σ 2

for some known σ 2 instead of assumption of known f (x|θ ). Without loss of generality, we can assume σ = 1. Since we
assume that f (x|θ ) is unknown, our procedure will cover a broad class of f (x|θ ). Typically, θ is the location parameter leading
to f (x|θ ) = q(x − θ ) for some density q which is usually generated from an additive structure Xi = θi + ϵi for ϵi ∼ q(ϵ).
However, the additive structure is not required in our estimation problem.

We assume that both f (x|θ ) and G are unknown, so our goal is to develop an estimator which does not require specific
form of f (x|θ ) and G. We propose an estimator which is more robust than estimators using specific form of f (x|θ ) or G.

To accomplish our goal to develop a new type of estimator, we approximate the optimal Bayes estimator which will
be defined below. The optimal Bayes rule requests information on f (x|θ ) and G, however f (x|θ ) and G are assumed to be
unknown in our problem, so our main idea is to approximate f (x|θ ) based on the empirical likelihood and approximate G
based on general maximum likelihood estimation (GMLE).

First, we briefly review the Bayes estimator under square loss function. Under the square loss function, the Bayes
estimator denoted by tG(x) = argminδE((δ − θ )2|x) is

tG(x) = E(θ |x) =

∫
θ f (x|θ )dG(θ )∫
f (x|θ )dG(θ )

. (2)

In particular, when f (x|θ ) is either normal or Poisson distribution, the Bayes estimator depends only on the marginal
distribution of x, f (x) =

∫
f (x|θ )dG(θ ). See Brown and Greenshtein (2009) for normal distribution and Park (2012) and

Brown et al. (2013) for Poisson distribution. Ideally, when both f (x|θ ) and G are known, the Bayes estimator obtains the
optimal risk, say R∗(G) = E(θ − tG(X))2. For any estimator t(x), we actually have E(θ − t(X))2 = R∗(G) + E(tG(X) − t(X))2.
Therefore, if either f (x|θ ) or G is misspecified, t(x) may be different from tG(x) which can lead to E(tG(X) − t(X))2 > 0. In
most of the literatures on empirical Bayes estimation, it is assumed that f (x|θ ) is known and only G is unknown. On the other
hand, some nonparametric estimators do not request any information on f (x|θ ) and G, however their performances are very
sensitive to the structure of G. To avoid two difficulties from assuming f (x|θ ) or the structure of G, we propose an estimator
based on both the empirical likelihood (EL) estimation and GMLE.

In the following subsections, we introduce our proposed estimator based on EL estimation and GMLE. We also demon-
strate that the linear empirical likelihood (LEB) estimator in Robbins (1983) can be understood under our framework and
present some relationship between the LEB estimator and our proposed estimator.
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