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a b s t r a c t

Multicollinearity among the predictor variables is a serious problem in regression analysis.
There are some classes of biased estimators for solving the problem in statistical literature.
In these biased classes, estimation of the shrinkage parameter plays an important role in
data analyzing. Using eigenvalue analysis, efforts have been made to develop skills and
methods for computing risk function of the estimators in regression models. A modified
estimator based on the QR decomposition to combat the multicollinearity problem of
design matrix is proposed in partially linear regression model which makes the data to
be less distorted than the other methods. The necessary and sufficient condition for the
superiority of the partially generalizedQR-based estimator over partially generalized least-
squares estimator for selecting the shrinkage parameter is obtained. Under appropriate
assumptions, the asymptotic bias and variance of the proposed estimators are obtained.
Also, a generalized cross validation (GCV) criterion is proposed for selecting the optimal
shrinkage parameter and the bandwidth of the kernel smoother and then, an extension
of the GCV theorem is established to prove the convergence of the GCV mean. Finally, the
Monté-Carlo simulation studies and a real application related to electricity consumption
data are conducted to support our theoretical discussion.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Partially linear regression models (PLRMs) are appropriate models when a suitable link function of the mean response is
assumed to have a linear parametric relationship to some explanatory variables while its relationship to the other variables
has an unknown form. Let (y1, x⊤1 , t1), . . . , (yn, x⊤n , tn) be the observations that follow the partially Linear regression model,
that is,

yi = x⊤i β + f (ti)+ ϵi, i = 1, . . . , n, (1.1)

where x⊤i = (xi1, xi2, . . . , xip) is a vector of explanatory variables,β = (β1, β2, . . . , βp)⊤ is an unknown p-dimensional vector
parameter, ti’s are design points which belong to some bounded domain D ⊂ R, f (t) is an unknown smooth function and
ϵi’s are random errors which are assumed to be independent of (xi, ti).

Surveys regarding the estimation and application of themodel (1.1) can be found in themonograph of Härdle et al. (2000).
Speckman (1988) studied partial residual estimation of β and f (·) in (1.1), and obtained asymptotic bias and variance of the
estimators. He showed that these estimators are less biased compared to the partial smoothing spline estimators. Bunea
(2004) proposed a consistent covariate selection technique in an PLRM through penalized least-squares criterion. He showed
that the selected estimator of the linear part is asymptotically normal. You and Chen (2007) considered the problem of
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estimation in model (1.1) with serially correlated errors, obtained the semiparametric generalized least-squares estimator
of the parametric component and studied the asymptotic properties of it. You et al. (2007) developed statistical inference for
the model (1.1) for both heteroscedastic and/or correlated errors under general assumption Var(ϵ) = σ 2V , with a positive
definite matrix V , is supposed to hold. For bandwidth selection in the context of kernel-based estimation in model (1.1), Li
et al. (2011) used cross-validation criteria for optimal bandwidth selection.

In regression analysis, researchers often encounter the problem of multicollinearity that is defined as the existence
of nearly linear dependency among columns of the design matrix X . The existence of multicollinearity may lead to wide
confidence intervals for the individual parameters or linear combination of the parameters andmay produce estimates with
wrong signs.

The most popular approach to combat multicollinearity is the ridge regression estimator proposed by Hoerl and Kennard
in the 1970s. Several other methods for dealing with multicollinearity are the r–k class estimator proposed by Baye
and Parker (1984), the biased estimator proposed by Liu (1993) and the r–d class estimator proposed by Kaçiranlar and
Sakallioğlu (2001). As a brief review on applicability of these strategies, Akdenïz and Tabakan (2009), Akdenïz Duran et
al. (2011), Kibria and Saleh (2011), Roozbeh et al. (2011), Akdenïz Duran and Akdenïz (2012), Roozbeh and Arashi (2013),
Amini and Roozbeh (2015), Arashi and Valizadeh (2015), Arashi et al. (2015), and Roozbeh (2015, 2016) employed ridge
methodology in facing with partially Linear regression model. Nomura and Ohkubo (1985), and Sarkar (1996) considered
r–k class estimator. Hubert and Wijekoon (2006), Yang et al. (2009), Yang and Xu (2011), and Arashi et al. (2014) used Liu’s
approach.

The main part of this paper is devoted to overcome multicollinearity using the QR decomposition and study the
asymptotic properties of the partial residual QR-based estimator ofβ and f (.) inmodel (1.1)with correlated errors. Thiswork
is organized as follows: contains some usual estimation methods used for estimating the ridge parameter in partially Linear
regression models, together with a modified one. In Section 4, a class of QR estimators is studied and then, its properties
are extracted and superiority condition of the new estimator in contrast to the partial generalized least-squares estimator is
given. Section 5 is devoted to obtaining the asymptotic bias and variance of the proposed estimators. To select the optimal
bandwidth of the kernel smoother and shrinkage parameters, the generalized cross validation criteria are proposed in
Section 6. An extension of the GCV theorem of Golub et al. (1979) is established to prove the convergence of the expectation
of the GCV criterion. Section 7 is devoted to the Monté-Carlo simulation studies and an application in bridge construction
data. Finally, conclusions are drawn in Section 8.

2. The partial residual ridge estimation

Consider the following partially Linear regression model

y = Xβ + f (t)+ ϵ, (2.1)

where y = (y1, . . . , yn)⊤, X = (x1, . . . , xn)⊤ is a n × p matrix, f (t) = (f (t1), . . . , f (tn))⊤ and ϵ = (ϵ1, . . . , ϵn)⊤. We assume
that in general, ϵ is a vector of disturbances, which is distributed with E(ϵ) = 0 and E(ϵ⊤ϵ) = σ 2V , where σ 2 is an unknown
parameter and V is a symmetric, positive definite known matrix.

To estimate β and f (t) for a point t ∈ D, first consider the simplified model

y = f (t)+ ϵ, (2.2)

obtained from (2.1)withβ = 0. The linear smoother of f (t) in (2.3) is f̂ (t) = kωn (t)y, withkωn (t) = (Kωn (t, t1), . . . , Kωn (t, tn)),
where Kωn (.) is a kernel function of order m with bandwidth parameter ωn. For the existence of f̂ (t, β) at the optimal
convergence rate n−4/5, in partially Linear regression models with probability one, we need some conditions on kernel
function. See Müller (2000) for more details.

If the kernel function Kωn (.) is of order m, according to Speckman (1988), there exist bounded functions h1 and h2, such
that for each t ∈ D,

E
(
kωn (t)y − f (t)

)
= ωm

n h1(t)f (m)(t)+ o(ωm
n ), (2.3)

and

Cov
(
kωn (t)y

)
= σ 2(nωn)−1h2(t)(1+ o(1)), (2.4)

where f (m)(t) is the mth derivative of f (t).
To estimate the parameters of the model (2.1), we first remove the non-parametric effect, apparently. Assuming β to

be known, a natural nonparametric estimator of f (.) is f̂ (t) = kωn (t)(y − Xβ). Replacing f (t) by f̂ (t) in (2.1), the model is
simplified to

y̌ = X̌β + ϵ, (2.5)

where y̌ =
(
In − Kωn

)
y, X̌ =

(
In − Kωn

)
X and Kωn is the smoother matrix with i, jth component Kωn (ti, tj).
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