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a b s t r a c t

Assessing performance of diagnostic markers is a necessary step for their use in decision
making regarding various conditions of interest in diagnostic medicine and other fields.
Globally useful markers could, however, have ranges of values that are ‘‘diagnostically
non-informative’’. This paper demonstrates that the presence of marker values from di-
agnostically non-informative ranges could lead to a loss in statistical efficiency during
nonparametric evaluation and shows that grouping non-informative values provides a
natural resolution to this problem. These points are theoretically proven and an extensive
simulation study is conducted to illustrate the possible benefits of using grouped marker
values in a number of practically reasonable scenarios. The results contradict the common
conjecture regarding the detrimental effect of grouped marker values during performance
assessments. Specifically, contrary to the common assumption that groupedmarker values
lead to bias, grouping non-informative values does not introduce bias and could sub-
stantially reduce sampling variability. The proven concept that grouped marker values
could be statistically beneficial without detrimental consequences implies that in practice,
tied values do not always require resolution whereas the use of continuous diagnostic
results without addressing diagnostically non-informative ranges could be statistically
detrimental. Based on these findings, more efficient methods for evaluating diagnostic
markers could be developed.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Advances in medicine and other diagnostic fields heavily rely on the availability of adequate tools to assess the presence
of a specific underlying condition of interest (e.g., disease) which may be related to the current health status of a patient
and/or to a response to an intervention. Biomarkers, diagnostic tests and new or improved technologies require diagnostic
accuracy evaluation as a part of development, optimization, and regulatory approval. Data for analyses of diagnostic accuracy
consist ofmarker values (e.g., ratings, diagnostic results) collected for a fixed number of ‘‘diseased’’ (i.e., with the condition of
interest) and ‘‘non-diseased’’ subjects. The diagnostic usefulness of amarker is determined by differences in the distributions
of themarker values for diseased andnon-diseased subjects,which can be captured by the Receiver Operating Characteristics
(ROC) curve (Zhou et al., 2011; Pepe, 2003). The ROC curve and associated indices allow one to focus specifically on diagnostic
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accuracy aside fromother characteristics ofmarker values (e.g., means, variances). Standard statistical procedures for logistic
regression (e.g., proc logistic, SAS v.9.4, Cary NC) also include ROC tools that enable the assessments of diagnostic accuracy
of continuous markers without the restrictions imposed by odds ratios.

The typical set-up for evaluating diagnostic accuracy includes marker values for n0 ‘‘non-diseased’’ subjects xi, i =

1, . . . , n0 and for n1‘‘diseased’’ subjects yj, j = 1, . . . , n1. In the target population, diagnostic results can be characterized
with survival distribution functions of SX (x) = Pr (X > x), and SY (y) = Pr (Y > y), respectively. When evaluated at a
given threshold ξ these functions are called correspondingly 1-specificity, or False Positive Fraction (FPF (ξ)) and sensitivity,
or True Positive Fraction (TPF (ξ)). The corresponding Receiver Operating Characteristic (ROC) curve is formed by points
(FPF (ξ) , TPF (ξ)), and it has an explicit formulation of ROC (e) = SY

(
S−1
X (e)

)
, where e swaps values from 0 to 1. We note

that throughout this manuscript we use capital letters to emphasize either the random nature of a quantity or its functional
role (as opposed to observed/fixed values).

The diagonal line (ROC(e) = e) represents the ROC curve of a useless marker (or a pure guessing process). The
discrepancies between a marker’s ROC curve and the diagonal line reflect the difference between the distributions of the
marker values for diseased and non-diseased subjects. Conventional ROC approaches for evaluating the diagnostic usefulness
of a marker often have analogs among standard statistical approaches for comparing two distributions. In particular, the
maximumdifference between the ROC curve and a diagonal line is quantified by the Youden’s indexwhich is directly related
to the Kolmogorov–Smirnov statistic (Pepe, 2003). The area under the ROC curve (AUC) is the most frequently used summary
index of diagnostic performance A =

∫ 1
0 ROC (e) de and has a natural relationship to the Wilcoxon statistic (Hanley and

McNeil 1982). The partial AUC (pAUC) often offers a more relevant, and sometimes more efficient, assessment of diagnostic
performance by focusing on the range of operating points which are of interest in the specific applications being considered
(McClish, 1989; Wieand et al., 1989; Ma et al., 2013).

Statistical analysis of ROC data can be implemented using a number of approaches including parametric, non-parametric,
and semi-parametric types of the frequentist inferences (Pepe, 2003; Zhou et al., 2011) as well as Bayesian approaches (Peng
and Hall, 1996; Zou and Hall, 2000; Erkanli et al., 2006; Gu et al., 2008). These approaches have known advantages and
drawbacks. In this paper we focus on non-parametric approaches that employ minimum assumptions about the underlying
data and rely only on the empirical ROC points.

Overall diagnostic accuracy of a marker is driven by the overall differences in the distributions of marker values for
diseased and non-diseased subjects, however not all ranges of values of a generally useful marker are equally informative. In
thisworkwe formalize the diagnostic informativeness of a range ofmarker values and prove that the nonparametric statistical
assessment of diagnostic accuracy performed usingmarker values from diagnostically non-informative ranges leads to a loss
of statistical efficiency. Moreover, we demonstrate that a natural way to handle diagnostic non-informativeness is provided
by simple grouping of marker values. In the next two sections we provide the theoretical justifications for this concept and
present a simulation study illustrating the quantitative losses/gains in precision in a range of scenarios typical for diagnostic
accuracy studies. We provide examples in Section 4 and we conclude with a summary of our results and several practical
ramifications thereof, in Section 5.

2. Methods

In this section we first relate non-informative diagnostic results to the shape of a part of the ROC curve. Next, we derive
a sufficient statistic for the ROC curve of a partially non-informative marker. In other words, we demonstrate that only a
fraction of the data completely determines the distribution of the empirical ROC points. Thereafter, we demonstrate that
given the derived sufficient statistic, the conditional expectation of the ROC curve is the same as the ROC curve for data with
ties. Losses in efficiency of the estimates computed using continuous marker data with non-informative ranges of values
immediately follow the Rao–Blackwell theorem. To simplify the theoretical derivations we focus on scenarios in which the
diagnostically non-informative results occur in the range of values below a certain threshold.

The shape of the ROC curve corresponding to diagnostically non-informative marker values
It is well known that the diagonal line in the ROC space (TPF = FPF ) represents the performance of a guessing process

which randomly assigns diagnostic results to subjects, regardless of their actual disease status (Egan, 1975; Pepe, 2003;
Zhou et al., 2011). This is a scenario where all diagnostic results are non-informative for discriminating between diseased
andnon-diseased subjects, namely, the distributions of the diagnostic results are the same SY (ξ ) = SX (ξ ), or FPF (ξ ) = TPF (ξ ).
Similarly, although not as widely recognized, the straight-line extending from any specific operating point (fpf (ξ0), tpf (ξ0))
to (1, 1) represents the performance of a guessing process applied to subjects with test results lower than ξ0 (e.g., Wagner
et al., 2001; Fawcett, 2006). Thus, the straight-line shape of a part of the ROC curve can be interpreted as an indication of the
lack of diagnostic information in marker values within the corresponding range.

The straight-line shape of the part of the ROC curve from (fpf (ξ0), tpf (ξ0)) to (1, 1) is equivalent to a constant derivative
for fpf > fpf (ξ0), i.e.,

∀e > fpf (ξ0) ,
d
de

ROC (e) = constant.

This, in its turn, is equivalent to the constancy of the diagnostic likelihood ratio for all marker values in the corresponding
range, i.e., ∀ξ < ξ0,

d
dξ TPF (ξ) /

d
dξ FPF (ξ) = constant . In other words, all marker values below ξ0 have the same relative
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