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a b s t r a c t

An empirical Bayes confidence interval has high user demand in many applications. In
particular, the second-order empirical Bayes confidence interval, the coverage error of
which is of the third order for a large number of areas, m, is widely used in small area
estimation when the sample size within each area is not large enough to make reliable
direct estimates according to a design-based approach. Yoshimori and Lahiri (2014a)
proposed a new type of confidence interval, called the second-order efficient empirical Bayes
confidence interval, with a length less than that of the direct confidence estimated according
to the design-based approach. However, this interval still has some disadvantages: (i) it
is hard to use when at least one leverage value is high; (ii) many iterations tend to be
required to obtain the estimators of one global model variance parameter as the number of
areas,m, increases, due to the area-specific adjustment factor. To prevent such issues, this
study proposes a more efficient confidence interval to allow for high leverage and reduce
the number of iterations for large m. To achieve this purpose, we theoretically obtained a
non-area-specific adjustment factor and the measure of uncertainty of the empirical Bayes
estimator, which consist of empirical Bayes confidence interval, maintaining the existing
desired properties. Moreover, we present three simulation results and real data analysis
to show overall superiority of our confidence interval method over the other methods,
including the one proposed in Yoshimori and Lahiri (2014a).
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1. Introduction1

There has been increasing demand for reliable statistics of government fund allocations, social services planning, etc.,
in smaller geographic areas and sub-populations, where large samples are not available. Because of the limited number of
observations within each area or domain, a direct estimator constructed according to the design-based approach only from
information within each area or domain, is not reliable. The empirical Bayes estimator and empirical best linear unbiased
predictor (EBLUP) help make efficient inferences by borrowing information from other areas via model-based approaches
to small area estimation. For a comprehensive overview of small area estimation, refer to Rao and Molina (2015). Fay and
Herriot (1979) first applied this model-based approach to Census data through a specific Bayesian model. The model, called
the Fay–Herriot model, has been widely used in practice. For i = 1, . . . ,m,

Level 1 :yi | θi
ind.
∼ N(θi,Di);

Level 2 :θi
ind.
∼ N(x′

iβ, A). (1)

In the above model, level 1 is used to take into account the sampling distribution of the direct estimator yi for small area i.2

A true mean for small area i, θi, is linked to provide the auxiliary variables xi = (xi1, . . . , xip)′ in a level-2 linking model. In3

practice, the coefficient p-vector β and the model variance parameter A in the linking model are unknown, and we need to4

estimate them from the observed data. The assumption of a known Di often follows from the asymptotic variances of the5

transformed direct estimates (Efron and Morris, 1975) or from empirical variance modeling (Fay and Herriot, 1979). This6

model can be viewed as the following linear mixed model:7

yi = θi + ei = x′

iβ + ui + ei, i = 1, . . . ,m,8

where ui and ei are mutually independent with the normality assumption ui
i.i.d.
∼ N(0, A) and ei

ind.
∼ N(0,Di).9

LetMi define the mean squared error (MSE) E[(θ̂i − θi)2] of the predictor θ̂i of a small area mean θi, where the expectation10

is on the joint distribution of y and θ under the Fay–Herriot model (1) with y = (y1, . . . , ym)′ and θ = (θ1, . . . , θm)′.11

The Bayes estimator of θi is consistent with the best predictor (BP) in this model, with the minimumMSE among all θ̂i. It12

is given by13

θ̂BP
i = (1 − Bi)yi + Bix′

iβ,14

where Bi =
Di

A+Di
is called the shrinkage factor toward x′

iβ from the direct estimate yi.15

If β is unknown, the best linear unbiased predictor (BLUP), in which β of θ̂BP
i is replaced by β̃ , minimizes the MSE among16

all linear unbiased predictors of θi, as follows:17

θ̂BLUP
i = (1 − Bi)yi + Bix′

iβ̃,18

where the weighted least-square estimator of β , β̃ = β̃(A) = (X ′V−1X)−1X ′V−1y, X = (x1, . . . , xm)′ and V = diag(A +19

D1, . . . , A + Dm).20

From the fact that both β and A are practically unknown, the empirical best linear unbiased predictor (EBLUP), which is21

consistent with the empirical Bayes estimator in the case, θ̂EB
i is widely used for small area inference, where the unknown22

model variance parameter A in θ̂BLUP
i is replaced by a consistent estimator Â:23

θ̂EB
i = (1 − B̂i)yi + B̂ix′

iβ̂,24

where B̂i =
Di

Â+Di
and β̂(Â) = β̂ = β̃(Â) and a consistent estimator Â for large m is even translation invariant for all yi and25

β . To estimate the model variance parameter A, the methods of moments estimator (see Fay and Herriot, 1979; Prasad and26

Rao, 1990) and standard maximum likelihood estimators, such as profile maximum likelihood (ML) estimator and residual27

maximum likelihood (REML) estimator are utilized. In particular, the REML estimator of A is widely used in terms of higher-28

order asymptotic properties for large m under some mild regularity conditions. Hereafter, we indicate the REML estimator29

as ÂRE , obtained from30

ÂRE = argmax
0≤A<∞

LRE(A|y),31

where the residual likelihood function LRE(A|y) = |X ′V−1X |
−1/2

|V |
−1/2 exp{−y′Py/2} and P = V−1

−V−1X(X ′V−1X)−1X ′V−1.32

This study focuses on the confidence interval for θi, used widely in small area estimation as well as point estimation. Let33

Ii denote the general form of the confidence interval as follows:34

Ii : ξi ± qisi, (2)35
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