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a b s t r a c t

New distance-based estimators of population size for snowball sample network data using
exponential random graph models (ERGMs) are presented. After ERGM parameters are
obtained using conditional estimation it is possible to simulate networks from the ERGM
across a range of hypothesized sizes and then estimate the population’s size. This is done by
creating simulated snowball samples from the simulated networks and then minimizing
their distances from an observed network statistic across network sizes. The number of
nodes in the snowball sample (snowball size) combined with a moment-based distance
is shown to be an effective estimator. For ERGM conditional estimate parameters, the
moment-based snowball size estimator can outperform a multivariate Mahalanobis esti-
mator, where the latter would be a maximum likelihood estimator under the assumption
the network statistics are multivariate Gaussian. ‘‘Extreme’’ ERGM scaling across network
sizes, which prevents finding a minimum-distance estimate, is also discussed.

© 2017 Published by Elsevier B.V.

1. Background 1

For hard-to-reach or ‘‘hidden’’ populations, link tracing designs like snowball sampling and respondent-driven sampling 2

are an efficient way to collect samples. However, a network sample leaves unclear the size of the population, which may be 3

interesting on its own (e.g., in a public health context) ormay be important for further research (e.g., for simulating networks 4

to study the effectiveness of public health interventions). In this paper we consider an approach for estimating the size of 5

populations using exponential random graph models (ERGMs) fit to snowball sampled network data. 6

There is previous literature on estimating the size of hidden populations, including for link-tracing samples (Frank 7

and Snijders, 1994), respondent-driven sampling (Handcock et al., 2014; Crawford et al., in press) and ad hoc methods 8

using ERGMs (Rolls et al., 2013). Methods for estimating the size of hidden populations using other sampling designs 9

include capture/re-capture estimators (Bao et al., 2010; Berchenko and Frost, 2011; Paz-Bailey et al., 2011) and a technique 10

combining link-tracing and cluster sampling (Félix-Medina and Thompson, 2004). 11

For link tracing designs, Frank and Snijders (1994) assume both that the seed set is an IID sample of the population 12

and arcs in the adjacency matrix for the population network are IID Bernoulli. Handcock et al. (2014) consider data from 13

respondent-driven sampling (RDS). In particular, they use ‘‘unit size’’, a generalization of node degree. They use a Bayesian 14

approach and a four component Gibbs sampler to approximate the joint posterior distribution for the population size, the 15

parameter of the unit size distribution, the unit sizes of the unobserved members of the population, and the sequence of 16
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unit sizes through each step of the data collection. Another important paper is Handcock and Gile (2010), which presents a1

general framework for considering network sampling designs, considers when sampling designs are amenable to an ERGM2

model and discusses likelihood estimation. In particular they bring the sampling design into the joint estimation of the3

ERGM parameters and ψ , where ψ is a parameter of the sampling design (e.g., the probability a member of the population4

is included in the seed set.)5

Starting from ERGM parameters obtained using conditional estimation (Pattison et al., 2013), Rolls et al. (2013) describe6

an ad hoc method to select an appropriate network size starting from snowball sample data. Koskinen et al. (2013) consider7

related problems in the context of inference for ERGM models with ‘‘covert’’ actors in a Bayesian framework. Shalizi and8

Rinaldo (2013) discuss the inappropriate use of the same ERGM parameters across a range of network sizes, but do not9

consider conditional estimation which is a technique to estimate ERGM parameters of the full population using a network10

sample. For dyad independent ERGMs and egonet sampling, (i.e., models without clustering), Krivitsky et al. (2011) and11

Krivitsky and Kolaczyk (2015) introduce an offset term into the ERGM specification so the same parameters can be used for12

a range of network sizes.13

The general approach described here also considers a range of hypothesized network sizes. Unlike Koskinen et al. (2013)14

these sizes are used for simulating networks (using the conditional estimates) and not estimation of ERGM parameters15

themselves. Unlike Handcock et al. (2014) the data is assumed from a k-wave snowball sample, not an RDS design, and16

ERGMmodel parameters are not estimated with the population size. Consistent with Shalizi and Rinaldo (2013), we actually17

exploit the idea that fixed ERGM parameters across different network sizes lead to networks with different properties.18

In our approach, snowball samples with the same number of seeds and waves as the empirical sample are taken from19

simulated population networks. These are used to create a distribution for the graph statistics over snowball samples for20

each population size. A distance from the graph statistics of the empirical sample to the distribution is minimized to create21

the network size estimate. An advantage of this approach is it places the emphasis on capturing observed properties of the22

data (e.g. graph statistics) rather than on network parameters. This is particularly important since the sensitivity of observed23

features to small changes in ERGM parameters is unclear. In contrast to Rolls et al. (2013), we also provide a framework to24

use multiple graph statistics to create the population size estimate.25

2. Methods26

2.1. Notation27

Exponential random graph models (ERGMs) (Frank and Strauss, 1986; Robins et al., 2007a) are a particular class of28

network models that have proven useful in modelling social networks. Under a homogeneity assumption whereby all29

structurally identical subgraphs are equally probable, these models have the form30

Pr(Y = y) = exp (η · z(y)) /κ, (1)31

where Y is an N × N binary matrix of variables for N nodes denoting whether a tie is present (1) or absent (0), y denotes a32

realization of Y , η is a vector of model parameters, z(y) is vector of corresponding network statistics observed in y, and κ is a33

normalizing constantwhich ensures Eq. (1) describes a proper distribution. ERGMs provide a parsimoniousmethod tomodel34

structural features of a network (e.g., edge density, clustering) and features related to nodal attributes (e.g., homophily).35

Thenetwork statistics z(y)may include structural quantities like the number of edges or triangles or any of the geometrically-36

weighted alternating statistics proposed in the literature (Snijders et al., 2006; Hunter, 2007). (See Robins et al., 2009 for a37

concise summary of ERGM alternating statistics.) They may also include node related quantities like the number of nodes38

with a shared attribute, as a means to capture homophily. Computation of κ is extremely demanding for all but the simplest39

ERGMs. For unknown κ , estimation and simulation for ERGMs usually involves Markov Chain Monte Carlo maximum40

likelihood estimation (MCMCMLE) and MCMC methods, respectively. ERGMs provide a parsimonious method to model41

structural features of a network (e.g., edge density, clustering) and features related to nodal attributes (e.g., homophily).42

We assume the observed data is a k-wave snowball sample. A snowball sample of a network Y is formed by starting with43

a collection S0 of seed nodes (referred to as the ‘‘seed set’’ or ‘‘zone 0’’), usually chosen as a random sample although other44

schemes like probability proportional to degree are possible. Let S1 (‘‘zone 1’’) be all the nodes not in S0 sharing an edge with45

a node in S0. Similarly, let Si (‘‘zone i’’) be all the nodes sharing an edge with a node in Si−1 that are not already in ∪
i−1
j=1Sj . Let46

si be an observation of Si. A 1-wave snowball sample is the subgraph formed by the nodes in S0 and S1, the edges between47

nodes in S0, and the edges between nodes in S0 and nodes in S1. A k-wave snowball sample is a (k−1)-wave snowball sample48

together with the nodes in Sk, the edges between nodes in Sk−1, and the edges between nodes in Sk−1 and nodes in Sk.49

Let yobs be the observed sample, sobs be the seed nodes of the observed sample, and n0 = |sobs| be the size of the seed50

set in the observed sample. Unless otherwise mentioned, we assume |S0| = n0 arising from a sampling choice rather than51

a random process. Further, we assume seed sets are equally likely and formed by choosing n0 nodes at random without52

replacement from thepopulation. In the case of an ERGMwith only structural parameters (i.e., no nodal attributes), specifying53

the conditions S0 = sobs and |S0| = n0 are equivalent. For an ERGMwith nodal attributes they are generally different because54

sobs also includes information on the joint frequency of attributes within the seed set.55

Handcock andGile (2010) provide a notation to express the sampling design for snowball samples. LetDN (y, s0) be the 0/156

N ×N matrix that is 1 if the arc represented by (i, j) in graph ywas sampled using seed set s0. Notice this is fully determined57
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