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native kernel functions. Specifically, discrete versions (both unordered and ordered) of the
popular Epanechnikov kernel do not have rapidly decaying weights. The analytic properties

Iéfg;’ggf{daﬁon of these kernels are contrasted with commonly used discrete kernel functions and their
Discrete kernel relative performance is compared using both simulated and real data. The simulation and
Panel data empirical results show that these kernel functions generally perform well and in some cases
Smoothing demonstrate substantial gains in terms of mean squared error.
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1. Introduction

An intuitive approach to estimate a univariate discrete probability (mass) function is to use the sample frequency of
occurrence as the estimator of a cell probability (i.e., frequency approach). However, when the number of cells is close to
or even greater than the sample size (the data are sparse), the frequency approach does not work well due to many zero
counts (Simonoff, 1996). In this case, applied researchers often resort to a smoothing approach, which introduces bias but
can dramatically lower mean squared error (MSE). In this paper, we focus on the kernel smoothing approach where the
underlying density p(x) is estimated by P (x) = %Zi":llt), with a kernel function I(-) appropriate for smoothing discrete
data. Existing discrete kernel functions date back to Aitchison and Aitken (1976), Habbema et al. (1978), Titterington
(1980), Wang and vanRyzin (1981), and Aitken (1983). More recently, Li and Racine (2003) propose kernel functions for
smoothing both unordered and ordered discrete data.

The kernel function’s ability to smooth data hinges on the bandwidth (or smoothing parameter). How this bandwidth
is selected is of the utmost importance in applied work and least-squares cross-validation (LSCV) has proven a popular
approach when discrete data are present given the lack of simple rule-of-thumb or plug-in bandwidths (see Chu et al.,
2015 for some recent work in this direction). However, in many applied situations, LSCV tends to select a relatively small
bandwidth relative to the theoretical optimum (undersmoothing), particularly when discrete data are sparse (e.g., see As-
paroukhov and Krzanowski (2001) or Coppejans (2003). One explanation for this problem is that many ordered discrete
kernel functions possess geometrically decaying weighting schemes, leading to a rapid decline in the weights used to smooth
the data (Rajagopalan and Lall, 1995). Adding to this line of reasoning, Chu et al. (2015) show that for an ordered discrete
kernel function with geometric weighting structure, the optimal bandwidth, in terms of the mean summed squared error
(MSSE) criterion, is a real root from a polynomial, with the order of the polynomial being determined by the number of cells.
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The main insight from this relationship is that the optimal bandwidth is inversely related to the order of the polynomial,
potentially compounding the small bandwidth problem.

These issues also occur in kernel regression estimation. For example, Henderson and Kumbhakar (2006) note that in their
longitudinal/panel application, capturing unobserved heterogeneity through an unordered discrete variable (with respect
to the cross-sectional dimension) results in a relatively small bandwidth. In this case, the regression estimator essentially
uses only T (time) observations for each cross-sectional unit. It is likely that this problem is pervasive in papers using
nonparametric methods in the presence of longitudinal data where the cross-sectional specific heterogeneity is treated as
an unordered discrete variable.

Although different methods have been proposed to resolve the issue of undersmoothing, most are modifications of
existing error criterion and are typically designed mainly for continuous variables (for example, see Hardle et al., 1988,
Chiu, 1990, Hart and Yi, 1998, Hurvich et al., 1998, Hall and Robinson, 2009) or involve sample splitting (Li et al., 2016).
Unlike existing studies, we attempt to use alternative discrete kernel functions in conjunction with the LSCV criterion.

Rajagopalan and Lall (1995) develop an ordered discrete version of the Epanechnikov (1969) kernel function which does
not possess a geometric weighting scheme, providing sufficient smoothing in the presence of sparse data. Unfortunately,
applied researchers who adopt kernel smoothing methods are largely unaware of this kernel function (an exceptionis Guerra
et al., 1997) which motivates us to attempt to further its application. Specifically, we detail Rajagopalan and Lall’s (1995)
ordered discrete Epanechnikov kernel function and propose an unordered discrete Epanechnikov kernel function.

In a similar vein, Kokonendji et al. (2007) develop a so-called triangular probability mass function and use it as an
ordered discrete kernel function. Their triangular kernel function does not impose a geometric weighting structure, but
is less relevant for our discussion here as this kernel function is designed for use with count data with excess zeros and the
function consists of two parameters which adds additional complications to bandwidth selection.

For both the unordered and ordered discrete Epanechnikov kernel functions, we derive the MSSE of the kernel density
estimator (probability mass function). Further, we demonstrate that a sufficient condition for asymptotic normality of
both the kernel density and regression estimators is satisfied by this new kernel, namely by establishing a second-order
approximation of the discrete kernels proposed here, similar to that used by Li and Racine (2003).

The results here are unique relative to the continuous data setting where it is well known that kernel choice is ancillary
to bandwidth choice. The discrete kernel seems to play a more important role. Given that the asymptotic bias and variance
of kernel density and regression estimators are independent of the discrete kernel used to smooth the data, this becomes
a finite sample issue; this topic is germane to study given that in the continuous only case it is relatively easy to assess
efficiency loss through the use of a particular kernel relative to the optimal. Our goal here is to study the impact that the
choice of discrete kernel has in a rigorous fashion through a variety of analytic, simulated and real data settings.

Here we examine the discrete Epanechnikov kernel functions versus Aitchison and Aitken’s (1976), Wang and vanRyzin’s
(1981), and Li and Racine’s (2003) kernel functions in simulations and empirical examples. For this set of kernel functions,
the simulation results show the discrete Epanechnikov kernel functions generally perform well. We find that a researcher is
generally no worse off and sometimes better off using a discrete Epanechnikov kernel in density estimation. However, the
researcher is significantly worse off when using the ordered discrete Epanechnikov kernel in the (continuous) conditional
density setting when there is an irrelevant ordered variable present. In both cross-sectional and longitudinal data regression,
the researcher appears to be no worse off using the unordered discrete Epanechnikov kernel and is sometimes strictly
better off. However, when the data are sparse, the Wang and van Ryzin or Li and Racine kernel performs better than the
ordered discrete Epanechnikov kernel. This result is surprising as the ordered discrete Epanechnikov kernel was designed
for sparse data in the density setting. It appears that these properties do not translate to the regression setting. In the case of
ordered discrete kernels with longitudinal data, we find no substantial differences across kernel functions in our simulations.
Our empirical examples largely mimic the simulation results except in the longitudinal data setting where we find both
substantial gains and losses for the discrete Epanechnikov kernels.

The remainder of this paper is organized as follows: Section 2 presents the ordered discrete Epanechnikov kernel,
develops the unordered discrete Epanechnikov kernel, compares the analytic properties of these kernel functions with those
commonly used in the literature and presents the asymptotic properties of density and regression estimators using these
kernels. Section 3 shows the finite sample performance via simulations. Section 4 provides several empirical illustrations
and Section 5 concludes.

2. Discrete Epanechnikov kernel functions

For the case of a continuous random variable X, Epanechnikov (1969) shows that the MSE optimal second-order kernel
function is

2 .
k() = {g‘”x = (1)

where —a = b = 0.75, yx = )% and h is the bandwidth. Rajagopalan and Lall (1995) extend this set-up to an ordered,
discrete random variable X. The discrete version of the optimal second-order kernel [(-) is required to satisfy two conditions:
(A) ;‘(J;thl(wx) = 1and (B) Z;“;’;fhl(wx)wx = 0. Condition (A) is the discrete counterpart of requiring a kernel function
to integrate to 1, while Condition (B) is the discrete counterpart of having a symmetric kernel with zero mean. The constants
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