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a b s t r a c t

Sufficient dimension reduction (SDR) is a successive tool for reducing the dimensionality of
predictors by finding the central subspace, aminimal subspace of predictors that preserves
all the regression information. When predictor dimension is large, it is often assumed that
only a small number of predictors is informative. In this regard, sparse SDR is desired
to achieve variable selection and dimension reduction simultaneously. We propose a
principal logistic regression (PLR) as a new SDR tool and further develop its penalized
version for sparse SDR. Asymptotic analysis shows that the penalized PLR enjoys the oracle
property. Numerical investigation supports the advantageous performance of the proposed
methods.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction 1

It is often of primary interest to identify the relationship between the univariate response Y and the p-dimensional 2

predictor X ∈ Rp. Sufficient dimension reduction (SDR) efficiently reduces the dimensionality of X by finding a lower 3

dimensional subspace of span(X) while preserving regression information in X. Specifically, SDR seeks a matrix B = 4

(b1, . . . , bd) ∈ Rp×d that satisfies 5

Y ⊥ X|B⊤X, (1) 6

where ⊥ denotes statistical independence. Compared to conventional parametric models, (1) is less stringent since it does 7

not assume any specific link functions between Y and X. The space spanned by B satisfying (1) is called the dimension 8

reduction subspace (DRS). The central subspace, denoted by SY |X is defined as the intersection of all DRSes, and hence it is 9

the lowest dimensional DRS. Cook (1996) showed that SY |X uniquely exists under mild conditions. In SDR, it is assumed that 10

SY |X = span(B) to make B an identifiable target. The dimension d of SY |X is referred to as the structural dimension, another 11

important quantity to be inferred from the data. 12

Since the seminal paper on sliced inverse regression (SIR, Li, 1991), there have been various methods developed to 13

estimate SY |X, which include but are not limited to sliced averaged variance estimation (SAVE, Cook and Weisberg, 1991), 14

directional regression (DR, Li and Wang, 2007), sliced regression (Wang and Xia, 2008), contour regression (Li et al., 2005), 15

and principal support vector machine (PSVM, Li et al., 2011). 16
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Fig. 1. SVM (hinge) loss versus logistic (binomial log-likelihood) loss: The (dashed blue) logistic loss is a smooth, convex, and continuously differentiable
function while the (solid red) SVM hinge loss is not. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Among many others, PSVM is a recently developed SDR method and brings new insight by connecting SDR to penalized1

machine learning methods such as the support vector machine (SVM). The idea of PSVM is simple as follows. First,2

dichotomize the continuous response Y by introducing a pseudo response Ỹ = 1 if Y is greater than a given cutoff value r ,3

and −1 otherwise. A sequence of linear SVMs is then repeatedly trained for (Ỹr ,X) for different values of r . Li et al. (2011)4

showed that normals of the optimal hyperplanes from these linear SVMs lie on SY |X. Finally, SY |X can be recovered by the5

spectral decomposition of these normals. PSVM is known to perform better than classical SDR methods such as SIR, and it6

tackles both linear and nonlinear SDR in a unified framework via kernel trick, as SVM does.7

In this article, we propose a principal logistic regression (PLR) as an alternative to PSVM. Namely, we apply the logistic8

regression to (Ỹ ,X) instead of SVM. The advantages of the logistic regression over SVM are obvious since its loss function is9

smooth and strictly convex (see Fig. 1). PLR not only entails simpler asymptotic results under less stringent conditions butQ310

also is computationally stable. It is important to note that PLR is not a parametric method for SDR since we replace the loss11

in population level and hence the target of estimation completely changes.12

Sparse SDR that seeks a sparse representation of the basis of SY |X is often desired to achieve the dimension reduction13

and variable selection simultaneously. Sparse SDR facilitates the interpretation of the results and improves the estimation14

accuracy by eliminating negligible uncertainties from the predictors with weak signals (Li, 2007). Toward sparse SDR,15

several methods have been proposed. See, for example, Li (2007), Bondell and Li (2009), Chun and Keleş (2010) and16

Wu and Li (2011).17

Sparse SDR assumes a unique partition X⊤
= (X⊤

+
,X⊤

−
) that satisfies

Y⊥X−|X+, (2)

where X+ ∈ Rq and X− ∈ Rp−q for some q(≪ p) (Cook et al., 2004; Bondell and Li, 2009). We call X+ and X− relevant18

and irrelevant variables, respectively. Without loss of generality we assume that the first q predictors are the relevant ones19

throughout this article. Under (1) and (2), the last p − q rows of B are all zeros, which makes B sparse and has an identical20

sparsity structure across different columns. That is, the last p − q elements of B are zeros regardless of the cutoff values. In21

order to preserve such sparsity structure, we employ a max-SCAD penalty. The SCAD penalty (Fan and Li, 2001) is known to22

enjoy the oracle property, but its computation is more challenging due to its nonconvexity. However, the logistic loss can23

minimize the additional computational burden thanks to its smoothness. We establish the oracle property of themax-SCAD24

penalized PLR and develop an efficient algorithm for its sample estimation.25

The rest of the article is organized as follows. In Section 2we propose PLR and describe related details including its sample26

estimation, asymptotic properties, and the structural dimension estimation. The penalized PLR is developed in Section 3 in27

which we establish its oracle property and develop an efficient algorithm for the sample estimation. In Section 4, simulation28

studies are carried out to investigate finite sample performances of both PLR and the penalized PLR, and real data analysis29

results are given in Section 5. Final discussions follow in Section 6. All the technical proofs are relegated to the online30

Supplementary Materials (see Appendix A).31
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