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a b s t r a c t

In analyzing longitudinal data, within-subject correlations are a major factor that affects
statistical efficiency. Working with a partially linear model for longitudinal data, a subject-
wise empirical likelihood based method that takes the within-subject correlations into
consideration is proposed to estimate the model parameters. A nonparametric version of
the Wilks Theorem for the limiting distribution of the empirical likelihood ratio, which
relies on a kernel regression smoothing method to properly centered data, is derived. The
estimation of the nonparametric baseline function is also considered. A simulation study
and an application are reported to investigate the finite sample properties of the proposed
method. The numerical results demonstrate the usefulness of the proposed method.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction 1

In a longitudinal study, subjects are repeatedly measured over time. Two major features of the data resulted from a 2

longitudinal study are the aging effect and the within-subject correlation structure. To estimate the aging effect, it is well 3

known that a fully nonparametric regression model suffers from the ‘‘curse of dimensionality’’. To avoid the difficulty, a 4

partially linear model is popularized. That is, one proposes some regression structure on covariate effects but leave the time 5

effect nonparametric. 6

On the other hand, the within-subject correlation structure is a much more difficult problem. While the method of 7

generalized estimating equations (GEEs) by Liang and Zeger (1986) is very useful, it has been shown that ignoring thewithin- 8

subject correlation structure may result in substantial loss of efficiency in estimation and inference; see, for example, Albert 9

and McShane (1995), Fitzmaurice (1995), Hall and Severini (1998), Wang and Carey (2003), and Wang et al. (2010). 10

In this paper, we plan to tackle the latter problem in a partial linear model via an empirical likelihood method. To be 11

more precise, let Y (t) be the response variable and X(t) be the q dimensional covariate vector at time t . Assume the baseline 12

function of the response variable is g(t) at time t . We consider the following partial linear model for longitudinal data: 13

Y (t) = βTX(t) + g(t) + ϵ(t), (1) 14

where β is the q dimensional vector of the regression coefficient parameters and ϵ(t) is a stochastic error process with 15

E{ϵ(t)} = 0. We wish to estimate the model parameters β and the baseline function g(t) simultaneously. Assume that t is 16

bounded in asymptotic considerations. 17
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Taking expectation on both sides of (1) we have1

E[Y (t)] = βTE[X(t)] + g(t). (2)2

Subtracting (2) from (1) we obtain3

Y (t) − E[Y (t)] = βT
{X(t) − E[X(t)]} + ϵ(t).4

Suppose that we have a data set that contains n subjects. For each subject i, the measurements are made at times5

ti1, . . . , timi . Thus the model under consideration is6

Yi(tij) = βTXi(tij) + g(tij) + ϵi(tij), i = 1, . . . , n, j = 1, . . . ,mi,7

with the centered sample model as follows:8

Yi(tij) − E[Yi(tij)] = βT Xi(tij) − E[Xi(tij)]


+ ϵi(tij). (3)9

For simplicity, we denote Yij = Yi(tij), Xij = Xi(tij) and ti = (ti1, . . . , timi)
T . We introduce the vector notation: Yi = Yi(ti) =10

(Yi1, . . . , Yimi)
T , Xi = Xi(ti) = (Xi1, . . . , Ximi)

T and ϵi = ϵi(ti) = (ϵi1, . . . , ϵimi)
T . LetYi = Yi − E(Yi), Xi = Xi − E(Xi) be the11

mean centered measurements. Then the matrix representation of (3) is12 Yi =Xiβ + ϵi, i = 1, . . . , n. (4)13

Since the error process is unknown, Owen’s empirical likelihood method (1988) is suitable. Xue and Zhu (2007) studied14

the estimation problemusing empirical likelihoodmethodwithout considering thewithin-subject correlation structure. Fan15

and Li (2004) studied two estimationmethods: difference-based estimator and profile least squares approach. Neither of the16

papers took the within-subject correlation into consideration. Wang et al. (2010) tackled this problem with two empirical17

likelihood based methods in estimating the regression coefficients and obtained promising results. In this paper, we adopt18

one of the methods, the subject-wise empirical likelihood approach, to analyze longitudinal data in partial linear models. In19

particular, we will make use of the centered sample model (3) in our procedure.20

The rest of the paper is organized as follows. In Section 2, we propose a subject-wise empirical likelihood estimator for21

partial linear models with the aim of achieving better efficiency. Some analytic justifications are provided for our proposed22

approach. While our main focus is on how to estimate parameters β more efficiently in model (1) with a proper confidence23

region, we briefly address the issue of estimating the baseline function. In Sections 3 and 4 we report some results of our24

empirical studies on both simulated and real data sets. Some concluding remarks are given in Section 5.25

2. Subject-wise empirical likelihood estimation26

2.1. Estimation of the coefficient parameters27

We propose a new method to estimate the regression coefficients with better efficiency via empirical likelihood in the28

partial linear model (1). Recall that in Eq. (4), the components within each ϵi are allowed to be correlated.29

Let Σi = cov(Yi|Xi) = cov(Yi|Xi) and Σin be an estimator of Σi. Furthermore, we assume that Σin converges to Σ∗

i , an30

mi × mi positive definite matrix. Let31

Zi(β) =
zi1(β), . . . ,zimi(β)

T
= Σ∗−1

i (Yi −Xiβ). (5)32

If Σ∗

i = Σi for all i = 1, . . . , n, thenZi(β) is the usual generalized least squares estimating function. If Σ∗

i = σ 2Imi for33

some σ 2 > 0, where Imi is the mi dimensional identity matrix, thenZi(β) is the estimating function with the working34

independence assumption. Notice that E[Zi(β)] = 0 when β is the true parameter. Define the auxiliary variable35

Ψi(β) =

mi
i=1

zij(β)Xij =XT
i
Zi(β).36

Let mY (t) = E[Y (t)] and mX (t) = E[X(t)] be the mean processes of Y (t) and X(t), respectively. Notice that mY (t) and37

mX (t) are unknown. Hence,Zi(β) contains unknown functions. Thus we need to estimate the two mean functions against38

time t first. One way to handle this is to use kernel smoothing method. Let mY (t) and mX (t) be the kernel estimators of39

mY (t) and mX (t) with kernel density function K . To be precise, that is40

mY (t) =

n
i=1

mi
j=1

YijK


tij−t
h


n

i=1

mi
j=1

K


tij−t
h

 ,41
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