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a b s t r a c t

Most methodologies for sufficient dimension reduction (SDR) in regression are limited to
continuous predictors, althoughmany data sets do contain both continuous and categorical
variables. Application of these methods to regressions that include qualitative predictors
such as gender or speciesmay be inappropriate. Regressions that include a set of qualitative
predictors W in addition to a vector X of many-valued predictors and a response Y
are considered. Using principal fitted components (PFC) models, a likelihood-based SDR
method, a sufficient dimension reduction of X that is constrained through the sub-
populations established by W is sought. An estimator of the sufficient reduction subspace
is provided and its use is demonstrated through applications.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

We consider a regression problem of a univariate response Y on a p-vector X of continuous predictors. When p is large,
it is always worthwhile to find a reduction R(X) of dimension less than p that captures all regression information of Y on
X . Replacing X by a lower dimensional function R(X) is called dimension reduction. When R(X) retains all of the relevant
information about Y , it is referred to as a sufficient reduction. For our purposes, we can replace X with a sufficient reduction
R(X), improving the ability to visualize data and predict future observations, and mitigating dimensionality issues when
carrying out further analysis. Cook (2007) formally defined a reduction R : Rp

→ Rd, d ≤ p, to be sufficient if it satisfies
one of the following three conditions: (i) Y |X ∼ Y |R(X), (ii) X |(Y , R(X)) ∼ X |R(X), and (iii) XyY |R(X). The symbol y stands
for statistical independence, and U ∼ V stands for U and V having identical distribution. Condition (i) holds in a forward
regression while condition (ii) holds in an inverse regression setup. Under a joint distribution of (Y , X) the three conditions
are equivalent. Thus, we can use an inverse regression to obtain a sufficient reduction of X and use this reduction in lieu of
X when modeling Y |X .

Although it is difficult to deal with dimension reduction in general, much progress has beenmade by restricting attention
to linear subspaces ofRp. If R(X) = ηTX is a sufficient linear reduction, then so is R(X) = (ηA)TX for any d×d full-rankmatrix
A. Consequently, only the subspace spanned by the columns of η can be identified, and this subspace is called a dimension-
reduction subspace. If span(η1) and span(η2) are both dimension-reduction subspaces, then under mild conditions so is
their intersection. Thus, the inferential target in sufficient dimension reduction is often taken to be the central subspace
SY |X , defined as the intersection of all dimension-reduction subspaces (Cook, 1998). A minimal sufficient linear reduction is
then of the form R(X) = ηTX , where the columns of η form a basis for SY |X .
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Several sufficient dimension methods have been proposed in the literature since the seminal sliced inverse regression
(SIR; Li, 1991). Most of these existing methods, including inverse regression estimation (Cook and Ni, 2005) and directional
regression (Wang and Li, 2007) are distribution-free. A recent class of methodologies called principal fitted components
(PFC) proposed by Cook (2007) and further elaborated by Cook and Forzani (2008) is likelihood-based.

Nearly allmethodologies for sufficient dimension reduction are limited to continuous predictors, althoughmanydata sets
do contain both continuous and categorical variables. Application of these methods to regressions that include categorical
predictors may be inappropriate, because of the questionable relevance of linear combinations involving qualitative
variables. Chiaromonte et al. (2002) described how the theory of dimension reduction can be extended to regression
analyses involving both quantitative predictors X , and a categorical predictor, sayW . They developed their methodology by
extending the formulation of SIR using the concept of a partial dimension reduction subspace, defined as any subspace S that
satisfies the conditional independence statement YyX |(PSX,W ). The methodology of Chiaromonte et al. (2002) assumed
that the sub-populations are homogeneous in terms of their variances. Ni and Cook (2006) expanded the methodology of
Chiaromonte et al. (2002) to heterogeneous sub-populations. Recently, Kim (2011) developed partial PFC models to reduce
the dimension of one set of predictors, say X , while maintaining another set of predictors W . In her work, the set W was
assumed random and continuous.

We herein assume that W is a variable which indicates relatively few categories. Our goal is to develop partial PFC, in
order to obtain a reduction of X which is constrained through the sub-populations indexed by the values ofW . Chiaromonte
et al. (2002) and Li et al. (2003) have established the general framework with the extended moment-based method SIR. As
a model-based method, PFC provides a wider range of possibilities than SIR. It has been shown that when the response Y
is categorical, SIR and PFC estimate the same minimal sufficient reduction subspace. When Y is continuous, SIR discretizes
the response through a slicing procedure and can leave intra slice information behind. On the other hand, the use of flexible
basis functions in PFC can potentially help avoid such loss of information (Cook, 2007; Cook and Forzani, 2008).

Principal fitted component models are a likelihood-based approach to dimension reduction via inverse regression. Let Xy
denote the p-dimensional random variable distributed as X |(Y = y) and let µ̄ = E(X), µy = E(Xy). The models are based
on the assumption that Xy has a multivariate normal distribution, and are therefore only appropriate for many-valued,
quantitative, continuous or nearly-continuous predictors. It is assumed that µy − µ̄ falls in a subspace S of dimension d
in Rp as y varies in its sample space. Let Γ ∈ Rp×d denote a basis of S. We can then write Xy ∼ N(µ̄ + Γ νy, ∆) where
νy = Γ T (µy − µ̄) is a function of y. The conditional variance ∆ is assumed to be independent of Y . Once the response
values are observed, the unknown function νy can bemodeled as νy = β(fy −E[fY ]), where β is an unknown, unconstrained
parameter and fy is a flexible basis function. The subsequent model, written as

Xy = µ + Γ βfy + ∆1/2ε, (1)

withµ = µ̄+Γ βE(fY ), where the error term ε ∼ N(0, I), is called a PFCmodel. Several basis functions have been suggested,
including the polynomial, piecewise constant and piecewise polynomial, among others (Cook, 2007; Cook and Forzani, 2008;
Adragni and Cook, 2009). A number of variance structures have been proposed tomodel the conditional dependence among
the predictors. These structures include the isotropic (∆ = δ2I), the anisotropic [∆ = diag(δ2

1, . . . , δ
2
p)], and the structured,

which can accommodate conditional dependency among groups of predictors. Under PFC model with conditional variance
∆, a minimal sufficient reduction is R(X) = Γ T∆−1X and the central subspace is obtained as SY |X = ∆−1SΓ , where SΓ is
the subspace spanned by the columns of Γ .

In the following, we seek the reduction of the predictor vector X ∈ Rp, while W is an additional predictor that is not to
be included.We assume thatW represents one or more categorical variables that identifyw = 1, . . . , c sub-populations. In
Section 2, we provide the models and describe the methodology. Section 3 gives the maximum likelihood estimation of the
parameters involved in the models. Section 4 shows how to predict future observations by inverting the inverse regression
mean function E(X |Y ) to obtain E(Y |X). We show two applications in Section 5, then provide some discussions.

2. Class-based principal fitted components

For a given level w of the categorical predictorW , we assume that as y varies in its sample space, the curve µyw − µ̄w =

E(X |Y = y,W = w) − E(X |W = w) falls in a subspace SΓw of Rp. We first assume that Var(X |Y = y,W = w) = ∆w is
constant for any ywithin each sub-population indexed byw = 1, . . . , c . The termΓw is a p×dw semi-orthogonalmatrix, that
is Γ T

wΓw = Idw so that its columns span SΓw . We thus have within each class, Xyw ∼ N(µ̄w + Γwνyw, ∆w), w = 1, . . . , C ,
where νyw is an unknown function of y for the particular class w. This model is essentially a principal component model
as developed by Cook (2007), specifically for class w. The model assumes different means µw , different reduction kernel
matrices Γw , and different covariance ∆w for the c sub-populations. Given the response y, we model the unknown function
νyw by νyw = βw(fyw −E[fYw])where fyw is a set of flexible known basis functions and βw ∈ Rdw×r is an unrestricted rank dw

matrix. For simplicity we assume that the same basis functions are used for each class, but this assumption is not required;
from this point on we will write fy instead of fyw . With µw = µ̄w + ΓwβwE(fY |W = w), the subsequent model for each
sub-population is a principal fitted component model (Cook, 2007; Cook and Forzani, 2008).

Xyw = µw + Γwβwfy + ∆1/2
w ε, w = 1, . . . , c. (2)
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