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a b s t r a c t

A class of discrete-time branching particle filters is introducedwith individual resampling:
If there are Nn particles alive at time n, N0 = N , an ≤ 1 ≤ bn, Li

n+1 is the current
unnormalized importance weight for particle i and An+1 =

1
N

Nn
i=1
Li
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n+1 ∈ (anAn+1, bnAn+1). Otherwise,
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produced and assigned weight An+1, where ρ i
n is a Bernoulli of parameter

Li
n+1

An+1
−

Li
n+1
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
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The algorithms are shown to be stable with respect to the number of particles and
perform better than the bootstrap algorithm as well as other popular resampled particle
filters on both tracking problems considered here. Moreover, the new branching filters
run significantly faster than these other particle filters on tracking and Bayesian model
selection problems.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Nonlinear filtering deals with determining the distribution of the current state of a non-observable, random, dynamic
signal X given the history of a distorted, corrupted partial observation process Y living on the same probability space
(Ω,F , P) as X . Bayesian model selection, sometimes done while filtering, deals with determining which of a class of signal
models {X (i)}i∈I best fits the observed values of Y by pairwise Bayes’ factor comparison. For many practical problems each
potential signal is a time-homogeneous discrete-time Markov process {Xn, n = 0, 1, 2, . . .}, living on some complete,
separable metric space (E, ρ), with initial distribution π0 and transition probability kernel K . The observation process takes
the form (Y0 = 0 and) Yn = h (Xn−1) + Vn for n ∈ N, where {Vn}

∞

n=1 are independent random vectors with common
strictly positive, bounded density g that are independent of X , and the sensor function h is a mapping from E to Rd. Then,
the objective of filtering is to compute the conditional probabilities πn (A) = P


Xn ∈ A

F Y
n


, n = 1, 2, . . . , for all Borel

sets A or, equivalently, the conditional expectations πn (f ) = EP

f (Xn)

F Y
n


for bounded functions f : E → R, where

F Y
n

.
= B{Yl, l = 1, . . . , n} is the information obtained (meaning the σ -algebra generated) from the back observations

{Yl, l = 1, . . . , n}. The objective of Bayes factor model selection is to compare the ratio B12
n of marginal likelihoods between

potential signal models X (1) and X (2) with respect to some reference probability measure Q .
To do both filtering and model selection, a reference probability measure Q is introduced under which the signal,

observation process {(Xn, Yn+1), n = 0, 1, . . .} has the same distribution as the signal, noise process {(Xn, Vn+1), n =

0, 1, . . .} does under P . Hence, the observations are i.i.d. random vectors with strictly positive bounded density g and
are independent of X under measure Q . All the observation information is absorbed into the likelihood process {Ln, n =
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1, 2, . . .} transforming Q back to P , which in our case has the form

dP
dQ


F X

∞∨F Y
n

= Ln =

n
j=1

αj(Xj−1), with αj(x) =
g

Yj − h (x)


g

Yj
 , (1.1)

so Ln = αn(Xn−1)Ln−1 and L0 = 1. (Here and in the sequel, F X
n = B(Xj, j ≤ n) and F X

∞
= B(Xj, j ≥ 0) are the

σ -algebras generated by {Xj, 0 ≤ j ≤ n} and Xj, j ≥ 0 respectively.) The following (well-known) discrete Girsanov’s
theorem constructs the real probability P from the reference Q .

Theorem 1. Suppose that Ω = (E × Rd)∞, F = B((E × Rd)∞), {Xn, n = 0, 1, . . .} and {Yn, n = 1, 2, . . .} are independent
processes on (Ω,F ,Q ), the {Yn} are i.i.d. with strictly-positive, bounded density g on Rd and Vn

.
= Yn − h(Xn−1) for all

n = 1, 2, . . . . Then, there exists a probability measure P such that (1.1) holds, {Vn, n = 1, 2, . . .} are i.i.d. on (Ω,F , P)
with density g and {Xn} is independent of {Vn} with the same law as on (Ω,F ,Q ).

The unnormalized filters are then

σn (f ) = EQ Lnf (Xn)
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
, (1.2)

so σ0 = π0, as L0 = 1 and F Y
0 = {∅,Ω} and the filter satisfies πn (f ) =

σn(f )
σn(1)

by Bayes rule. Moreover, the Bayes factor
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, with L(i)n =
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(i)
j−1), is the unnormalized filter for signal

model X (i). Therefore, we can combine Bayesian model selection and filtering (for each potential signal) by constructing
approximations (denoted SN

n below) to the unnormalized filter for each candidate signal model. As words of caution, our
setting is certainly not the most general possible for our unnormalized and branching particle filter approach as we do not
want to over complicate the setting and conditions while introducing newmethods. Indeed, it is anticipated that with some
work other observation models can be used and some form of Lookahead Sequential Monte Carlo strategy related to those
considered in Lin et al. (2013) could be developed based upon our branching particle algorithms. However, there are also
interesting situations like rare event importance sampling (see Le Gland and Oudjane, 2006) that appear ill-suited for our
approach, even with a more general setting.

1.1. Background

Particle filters are utilized widely and the original (resampled) interacting particle filters have been intensely studied
(see e.g. Del Moral and Miclo, 2000 and Cappe et al., 2007 for an overview and historical account). However, particle filters
performance depends heavily upon at least two factors:

• The importance density proposals used for sampling, and
• The resampling method used,

with both being active areas of investigation and the later claim being justified in e.g. Del Moral et al. (2001), Douc et al.
(2005) and Hol et al. (2006). Moreover, resampling is the most difficult and critical step to parallelization as is pointed
out in Murray et al. (2016) so effective replacement by branching may be even more valuable in parallel implementations.
Furthermore, resampled particle filters approximate the actual filter πn so prior filter estimates must be stored to perform
Bayes factor model selection. On the other hand, the weighted particle filter (credited to Handschin, 1970; Handschin
and Mayne, 1969) approximates the unnormalized particle filter σn, is the most basic particle filter and is embarrassingly
computer parallelizable. More generally, branching particle filters, like those introduced by Crisan and Lyons (1997), can
havemodel selection capabilities, effective resampling andbehighly parallelizable. However, branching particle filters suffer
from dramatic particle swings and difficult analysis—or do they? Herein, we introduce and analyze branching particle filters
that avoid the weighted-particle-filter particle spread problems yet still have immediate model selection capabilities. They
include the weighted particle filter as the extreme zero-resampling case and a branching variation of the better algorithm
in Del Moral et al. (2001) as the fully-resampled case. They are stable with respect to particle number swings and can
be analyzed using exchangeability (in lieu of independence). In order to focus just on our branching scheme, we ignore
possible (large, problem-dependent) gains attainable by using alternative importance sampling density proposals and stick
to sampling from the signal dynamics.

There are many approaches to reducing resampling noise in the basic bootstrap filter. For example, researchers brought
in importance sampling and delayed bulk resampling methods (see e.g. Del Moral et al., 2012). Others have introduced
less noisy types of resampling, which we discuss below. However, there are few studies like Ballantyne et al. (2000) of
the practical partially-resampled algorithms where decisions are made on a particle-by-particle basis with the aim of only
removing the poor particles and splitting the best particles (in an unbiased manner). Kouritzin and Sun (2005) do obtain
L2-rates of convergence for a partially-resampled algorithm in a specific setting. Our present work introduces new classes
of branching particle filters, motivates their use and sets up a framework for studying them.We refer the reader to standard
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