Lasso, fractional norm and structured sparse estimation using a Hadamard product parametrization

Peter D. Hoff
Department of Statistical Science, Duke University, Box 90251, Durham, NC, 27708-0251, USA

A R TICLE INFO

Article history:

Received 17 January 2017
Received in revised form 12 June 2017
Accepted 14 June 2017
Available online xxxx
Keywords:
Cyclic coordinate descent
Generalized linear model
Linear regression
Optimization
Ridge regression
Sparsity
Spatial autocorrelation

Abstract

Using a multiplicative reparametrization, it is shown that a subclass of L_{q} penalties with q less than or equal to one can be expressed as sums of L_{2} penalties. It follows that the lasso and other norm-penalized regression estimates may be obtained using a very simple and intuitive alternating ridge regression algorithm. As compared to a similarly intuitive EM algorithm for L_{q} optimization, the proposed algorithm avoids some numerical instability issues and is also competitive in terms of speed. Furthermore, the proposed algorithm can be extended to accommodate sparse high-dimensional scenarios, generalized linear models, and can be used to create structured sparsity via penalties derived from covariance models for the parameters. Such model-based penalties may be useful for sparse estimation of spatially or temporally structured parameters.

© 2017 Published by Elsevier B.V.

1. Introduction

Consider estimation for the normal linear regression model $y \sim N_{n}\left(X \beta, \sigma^{2} I\right)$, where $X \in \mathbb{R}^{n \times p}$ is a matrix of predictor variables and $\beta \in \mathbb{R}^{p}$ is a vector of regression coefficients to be estimated. A least squares estimate is a minimizer of the residual sum of squares $\|y-X \beta\|^{2}$. A popular alternative estimate is the lasso estimate (Tibshirani, 1996), which minimizes $\|y-X \beta\|^{2}+\lambda\|\beta\|_{1}$, a penalized residual sum of squares that balances fit to the data against the possibility that some or many of the elements of β are small or zero. Indeed, minimizers of this penalized sum of squares may have elements that are exactly zero.

There exist a large variety of optimization algorithms for finding lasso estimates (see Schmidt et al. (2007) for a review). However, the details of many of these algorithms are somewhat opaque to data analysts who are not well-versed in the theory of optimization. One exception is the local quadratic approximation (LQA) algorithm of Fan and Li (2001), which proceeds by iteratively computing a series of ridge regressions. Fan and Li (2001) also suggested using LQA for non-convex L_{q} penalization when $q<1$, and this technique was used by Kabán and Durrant (2008) and Kabán (2013) in their studies of non-convex L_{q}-penalized logistic regression. However, LQA can be numerically unstable for some combinations of models and penalties. To remedy this, Hunter and Li (2005) suggested optimizing a surrogate "perturbed" objective function. This perturbation must be user-specified, and its value can affect the parameter estimate. As an alternative to using local quadratic approximations, Zou and Li (2008) suggest L_{q}-penalized optimization using local linear approximations (LLA). While this approach avoids the instability of LQA, the algorithm is implemented by iteratively solving a series of L_{1} penalization problems for which an optimization algorithm must be chosen as well.

This article develops a simple alternative technique for obtaining L_{q}-penalized regression estimates for many values of $q \leq 1$. The technique is based on a non-identifiable Hadamard product parametrization (HPP) of β as $\beta=u \circ v$, where

[^0]
ARTICLE IN PRESS

" \circ " denotes the Hadamard (element-wise) product of the vectors u and v. As shown in Section 2, if \hat{u} and \hat{v} are optimal L_{2} penalized values of u and v, then $\hat{\beta}=\hat{u} \circ \hat{v}$ is an optimal L_{1}-penalized value of β. An alternating ridge regression algorithm for obtaining $\hat{u} \circ \hat{v}$ is easy to understand and implement, and is competitive with LQA in terms of speed. Furthermore, a modified version of HPP can be adapted to provide fast convergence in sparse, high-dimensional scenarios. In Section 3 we consider extensions of this algorithm for non-convex L_{q}-penalized regression with $q \leq 1$. As in the L_{1} case, L_{q}-penalized linear regression estimates may be found using alternating ridge regression, whereas estimates in generalized linear models can be obtained with a modified version of an iteratively reweighted least squares algorithm. In Section 4 we show how the HPP can facilitate structured sparsity in parameter estimates: The L_{2} penalty on the vectors u and v can be interpreted as independent Gaussian prior distributions on the elements of u and v. If instead we choose a penalty that mimics a dependent Gaussian prior, then we can achieve structured sparsity among the elements of $\hat{\beta}=\hat{u} \circ \hat{v}$. This technique is illustrated with an analysis of brain imaging data, for which a spatially structured HPP penalty is able to identify spatially contiguous regions of differential brain activity. A discussion follows in Section 5.

2. L_{1} optimization using the HPP and ridge regression

2.1. The Hadamard product parametrization

The lasso or L_{1}-penalized regression estimate $\hat{\beta}$ of β for the model $y \sim N_{p}\left(X \beta, \sigma^{2} I\right)$ is the minimizer of $\|y-X \beta\|^{2}+\lambda\|\beta\|_{1}$, or equivalently of the objective function

$$
\begin{equation*}
f(\beta)=\beta^{\top} Q \beta-2 \beta^{\top} l+\lambda\|\beta\|_{1} \tag{1}
\end{equation*}
$$

where $Q=X^{\top} X$ and $l=X^{\top} y$. Now reparametrize the model so that $\beta=u \circ v$, where " \circ " is the Hadamard (element-wise) product. We refer to this parametrization as the Hadamard product parametrization (HPP). Estimation of u and v using L_{2} penalties corresponds to the following objective function:

$$
\begin{equation*}
g(u, v)=(u \circ v)^{\top} Q(u \circ v)-2(u \circ v)^{\top} l+\lambda\left(u^{\top} u+v^{\top} v\right) / 2 \tag{2}
\end{equation*}
$$

Consideration of this parametrization and objective function may seem odd, as the values of u and v beyond their elementwise product β are not identifiable from the data. However, g is differentiable and biconvex, and its local minimizers can be found using a very simple alternating ridge regression algorithm. Furthermore, there is a correspondence between minimizers of g and minimizers of f, which we state more generally as follows:

Lemma 1. Let $f(\beta)=h(\beta)+\lambda\|\beta\|_{1}$ and $g(u, v)=h(u \circ v)+\lambda\left(u^{\top} u+v^{\top} v\right) / 2$. Then

1. $\inf _{\beta} f(\beta)=\inf _{u, v} g(u, v)$;
2. if (\hat{u}, \hat{v}) is a local minimum of g, then $\hat{\beta}=\hat{u} \circ \hat{v}$ is a local minimum of f.

Proof. To show item 1 we write $u=\beta / v$, where "/" denotes element-wise division, so that

$$
\begin{aligned}
\inf _{u, v} g(u, v) & =\inf _{\beta, v} g(\beta / v, v) \\
& =\inf _{\beta} \inf _{v}\left\{h(\beta)+\lambda\left(\|\beta / v\|^{2}+\|v\|^{2}\right) / 2\right\} \\
& =\inf _{\beta}\left\{h(\beta)+\lambda \inf _{v}\left(\|\beta / v\|^{2}+\|v\|^{2}\right) / 2\right\} .
\end{aligned}
$$

The inner infimum over v is attained, and a minimizer \tilde{v} can be found element-wise. The j th element \tilde{v}_{j} of a minimizer \tilde{v} is simply a minimizer of $\beta_{j}^{2} / v_{j}^{2}+v_{j}^{2}$. If β_{j} is zero then $\tilde{v}_{j}=0$ is the unique global minimizer. Otherwise, this function is strictly convex in v_{j}^{2} with a unique minimum at $\tilde{v}_{j}^{2}=\left|\beta_{j}\right|$. The inner minimum is therefore

$$
\begin{aligned}
\|\beta / \tilde{v}\|^{2}+\|\tilde{v}\|^{2} & =\sum_{j=1}^{p}\left(\beta_{j}^{2} / \tilde{v}_{j}^{2}+\tilde{v}_{j}^{2}\right) \\
& =\sum_{j=1}^{p}\left(\beta_{j}^{2} /\left|\beta_{j}\right|+\left|\beta_{j}\right|\right)=2\|\beta\|_{1}
\end{aligned}
$$

and so

$$
\begin{aligned}
\inf _{u, v} g(u, v) & =\inf _{\beta, v} g(\beta / v, v) \\
& =\inf _{\beta}\left\{h(\beta)+\lambda \min _{v}\left(\|\beta / v\|^{2}+\|v\|^{2}\right) / 2\right\} \\
& =\inf _{\beta}\left\{h(\beta)+\lambda\|\beta\|_{1}\right\}=\inf _{\beta} f(\beta) .
\end{aligned}
$$

https://daneshyari.com/en/article/4949229

Download Persian Version:

https://daneshyari.com/article/4949229

Daneshyari.com

[^0]: E-mail address: peter.hoff@duke.edu.

