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a b s t r a c t

Using a multiplicative reparametrization, it is shown that a subclass of Lq penalties with q
less than or equal to one can be expressed as sums of L2 penalties. It follows that the lasso
and other norm-penalized regression estimates may be obtained using a very simple and
intuitive alternating ridge regression algorithm. As compared to a similarly intuitive EM
algorithm for Lq optimization, the proposed algorithm avoids some numerical instability
issues and is also competitive in terms of speed. Furthermore, the proposed algorithm
can be extended to accommodate sparse high-dimensional scenarios, generalized linear
models, and can be used to create structured sparsity via penalties derived from covariance
models for the parameters. Suchmodel-based penaltiesmaybe useful for sparse estimation
of spatially or temporally structured parameters.

© 2017 Published by Elsevier B.V.

1. Introduction 1

Consider estimation for the normal linear regression model y ∼ Nn(Xβ, σ 2I), where X ∈ Rn×p is a matrix of predictor 2

variables and β ∈ Rp is a vector of regression coefficients to be estimated. A least squares estimate is a minimizer of the 3

residual sum of squares ∥y− Xβ∥
2. A popular alternative estimate is the lasso estimate (Tibshirani, 1996), which minimizes 4

∥y − Xβ∥
2

+ λ∥β∥1, a penalized residual sum of squares that balances fit to the data against the possibility that some or 5

many of the elements of β are small or zero. Indeed, minimizers of this penalized sum of squares may have elements that 6

are exactly zero. 7

There exist a large variety of optimization algorithms for finding lasso estimates (see Schmidt et al. (2007) for a review). 8

However, the details of many of these algorithms are somewhat opaque to data analysts who are not well-versed in the 9

theory of optimization. One exception is the local quadratic approximation (LQA) algorithm of Fan and Li (2001), which 10

proceeds by iteratively computing a series of ridge regressions. Fan and Li (2001) also suggested using LQA for non-convex 11

Lq penalization when q < 1, and this technique was used by Kabán and Durrant (2008) and Kabán (2013) in their studies of 12

non-convex Lq-penalized logistic regression. However, LQA can be numerically unstable for some combinations of models 13

and penalties. To remedy this, Hunter and Li (2005) suggested optimizing a surrogate ‘‘perturbed’’ objective function. This 14

perturbationmust be user-specified, and its value can affect the parameter estimate. As an alternative to using local quadratic 15

approximations, Zou and Li (2008) suggest Lq-penalized optimization using local linear approximations (LLA). While this 16

approach avoids the instability of LQA, the algorithm is implemented by iteratively solving a series of L1 penalization 17

problems for which an optimization algorithm must be chosen as well. 18

This article develops a simple alternative technique for obtaining Lq-penalized regression estimates for many values of 19

q ≤ 1. The technique is based on a non-identifiable Hadamard product parametrization (HPP) of β as β = u ◦ v, where 20
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‘‘◦’’ denotes the Hadamard (element-wise) product of the vectors u and v. As shown in Section 2, if û and v̂ are optimal L2-1

penalized values of u and v, then β̂ = û ◦ v̂ is an optimal L1-penalized value of β . An alternating ridge regression algorithm2

for obtaining û ◦ v̂ is easy to understand and implement, and is competitive with LQA in terms of speed. Furthermore, a3

modified version of HPP can be adapted to provide fast convergence in sparse, high-dimensional scenarios. In Section 3 we4

consider extensions of this algorithm for non-convex Lq-penalized regression with q ≤ 1. As in the L1 case, Lq-penalized5

linear regression estimates may be found using alternating ridge regression, whereas estimates in generalized linear models6

can be obtained with a modified version of an iteratively reweighted least squares algorithm. In Section 4 we show how the7

HPP can facilitate structured sparsity in parameter estimates: The L2 penalty on the vectors u and v can be interpreted as8

independent Gaussian prior distributions on the elements of u and v. If insteadwe choose a penalty thatmimics a dependent9

Gaussian prior, then we can achieve structured sparsity among the elements of β̂ = û ◦ v̂. This technique is illustrated with10

an analysis of brain imaging data, for which a spatially structured HPP penalty is able to identify spatially contiguous regions11

of differential brain activity. A discussion follows in Section 5.12

2. L1 optimization using the HPP and ridge regression13

2.1. The Hadamard product parametrization14

The lasso or L1-penalized regression estimate β̂ ofβ for themodel y ∼ Np(Xβ, σ 2I) is theminimizer of ∥y−Xβ∥
2
+λ∥β∥1,15

or equivalently of the objective function16

f (β) = β⊤Qβ − 2β⊤l + λ∥β∥1, (1)17

where Q = X⊤X and l = X⊤y. Now reparametrize the model so that β = u ◦ v, where ‘‘◦’’ is the Hadamard (element-wise)18

product. We refer to this parametrization as the Hadamard product parametrization (HPP). Estimation of u and v using L219

penalties corresponds to the following objective function:20

g(u, v) = (u ◦ v)⊤Q (u ◦ v) − 2(u ◦ v)⊤l + λ(u⊤u + v⊤v)/2. (2)21

Consideration of this parametrization and objective function may seem odd, as the values of u and v beyond their element-22

wise product β are not identifiable from the data. However, g is differentiable and biconvex, and its local minimizers23

can be found using a very simple alternating ridge regression algorithm. Furthermore, there is a correspondence between24

minimizers of g and minimizers of f , which we state more generally as follows:25

Lemma 1. Let f (β) = h(β) + λ∥β∥1 and g(u, v) = h(u ◦ v) + λ(u⊤u + v⊤v)/2. Then26

1. infβ f (β) = infu,vg(u, v);27

2. if (û, v̂) is a local minimum of g, then β̂ = û ◦ v̂ is a local minimum of f .28

Proof. To show item 1 we write u = β/v, where ‘‘/’’ denotes element-wise division, so that

inf
u,v

g(u, v) = inf
β,v

g(β/v, v)

= inf
β

inf
v

{
h(β) + λ

(
∥β/v∥2

+ ∥v∥2) /2}
= inf

β

{
h(β) + λ inf

v

(
∥β/v∥2

+ ∥v∥2) /2} .
The inner infimum over v is attained, and a minimizer ṽ can be found element-wise. The jth element ṽj of a minimizer ṽ is
simply a minimizer of β2

j /v
2
j + v2j . If βj is zero then ṽj = 0 is the unique global minimizer. Otherwise, this function is strictly

convex in v2j with a unique minimum at ṽ2j = |βj|. The inner minimum is therefore

∥β/ṽ∥2
+ ∥ṽ∥2

=

p∑
j=1

(
β2
j /ṽ

2
j + ṽ2j

)
=

p∑
j=1

(
β2
j /|βj| + |βj|

)
= 2∥β∥1,

and so

inf
u,v

g(u, v) = inf
β,v

g(β/v, v)

= inf
β

{
h(β) + λmin

v

(
∥β/v∥2

+ ∥v∥2) /2}
= inf

β
{h(β) + λ∥β∥1} = inf

β
f (β).
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