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a b s t r a c t

Screening designs are frequently used in the initial stages of experimentation with the
goal of identifying important main effects as well as to gain insight on potentially impor-
tant two-factor interactions. Commonly utilized experimental designs for screening are
unreplicated and as such, provide no unbiased estimate of experimental error. However,
if statistical inference is to be performed as part of the experimental analysis, one view
is that inferential procedures should be performed using a model independent error
estimate instead of the residual mean square from the fitted model. As full replication of
an experiment may be quite costly, partial replication offers an alternative. Gilmour and
Trinca (2012) introduce criteria for constructing optimal designs for statistical inference
(and hence, provide for optimal selection of replicate design points). An extension of their
work is introduced by modifying the popular Bayesian D-optimality criterion to construct
partially replicated screening designs with less dependence on an assumedmodel. Designs
are compared using various criteria and a simulation study is conducted to investigate
design performance with respect to power and false discovery rates.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Screening designs are common in the early stages of experimentation with the goal of identifying factors having an
effect on the system/process under study. Typical screening designs are unreplicated strength 2 or 3 orthogonal arrays as
well as designs constructed using variance-based optimality criteria. One of the most popular and widely used criteria for
design construction is D-optimality, defined as maximizing the determinant of the information matrix X ′X , where X is the
n × p model matrix. The formulation is attributed to the use of the determinant to calculate volumes of high dimensional
confidence ellipsoids.

For the usual linear model y = Xβ + ϵ (where y is the n × 1 response vector, β is the p × 1 vector of unknown
model parameters, and ϵ ∼ N(0, σ 2I)), it is well known that the variance–covariance matrix of the least squares estimates
β̂ =

(
X ′X

)−1X ′y is Var
(
β̂
)

= σ 2
(
X ′X

)−1. Wald (1943) showed that maximizing
⏐⏐X ′X

⏐⏐ leads to minimization of the volume
of the joint confidence ellipsoid (i.e., our uncertainty) concerning β. Thus, a D-optimal design, ξ ∗, satisfies⏐⏐⏐X(ξ ∗

)′X (ξ ∗
)⏐⏐⏐ = max

ξ∈χ

⏐⏐X(ξ)′X (ξ)
⏐⏐ ,

over all possible designs, ξ , spanning some design space χ.
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As commonly utilized designs for screening are unreplicated, they provide no unbiased estimate of experimental
error. However, if statistical inference is considered an integral part of the experimental analysis (e.g., testing treatment
parameters, checking for lack-of-fit), one view is that inferential procedures should be performed using a pure error estimate
(obtained via replicated design points) versus the residual mean square from the fitted model. Gilmour and Trinca (2012)
(henceforth, GT) adopt this point of view and note that since bias in the fitted model residual mean square is unknown,
inferences performedmay be less informative andmore challenging to interpret.While disagreement in this regard naturally
persists (see, e.g., Smucker, 2012), this article is not an attempt to settle the dispute. Rather, we proceed under GT’s viewpoint
and seek screening designs that offer the ability to obtain a pure error estimate of σ 2.

Since full replication of an experimentmay be quite costly, partial replication offers a cost-saving alternative for obtaining
amodel independent error estimate. The construction of partially replicated designs is not a prevalent topic in the literature;
research in this area does exist, however. Lupinacci and Pigeon (2008) developed a class of partially replicated two-level
designs based on Hadamard matrices. For an n-run experiment, their construction method always produces designs with
n/4 replicates. Liao and Chai (2009) consider partial replication by constructing parallel flats designs with two identical flats.
This idea was also employed by Ou et al. (2013) who utilized semifoldover techniques for design construction. Other recent
work includes Tsai et al. (2012) and Tsai and Liao (2014). However, in all of these cases, the choice of the number of replicate
points is determined absent optimality considerations.

A flexible strategy to construct partially replicated screening designs is to use standard exchange algorithms driven by
the optimization of a specified criterion. GT use such an approach based uponDraper and Smith’s (1998, pg. 144) formulation
for the volume of a confidence interval region for β which is proportional to(

Fp,d;1−α

)p/2⏐⏐X ′X
⏐⏐−1/2

,

where p is the number of parameters in the assumed model, d is the pure error degrees of freedom, and Fp,d;1−α is the
(1 − α)-quantile of the F-distribution. The so-called DP-optimal design is then defined as that which maximizes⏐⏐X ′X

⏐⏐ /(Fp,d;1−α

)p
. (1)

As inference is rarely performed on the intercept, it can be treated as a nuisance parameter and hence, theDP-optimal design
maximizes⏐⏐X ′

sQXs
⏐⏐ /(Fp−1,d;1−α

)p−1
, (2)

where Xs is the model matrix without a column of ones, Q = I −
1
n J , I is the n × n identity matrix, and J is the n × nmatrix

of ones. Throughout this article, we assume the typical α = 0.05, although other choices could be considered.
GT construct optimal designs using a standard candidate exchange algorithm which permits designs of any given run

size as long as the assumedmodel is estimable. However, designs based upon (1) or (2) tend to have an excessive number of
replicate runs, and are thus inefficient regarding the use of available degrees of freedom in screening situations. To overcome
this potential deficiency and encourage the availability of degrees of freedom for testing lack-of-fit, GT propose to incorporate
degree of freedomefficiency (i.e., the proportion of experimental runs used to estimate factorial effects, dfeff = (n−d)/n) into
the formulation of a compound criterion. For example, combining the DP-criterion (2) with degrees of freedom efficiency,
we maximize⏐⏐X ′

sQXs
⏐⏐ κ1
p−1 (n − d)κ2

F κ1
p−1,d;1−α

, (3)

where κ = (κ1, κ2) are weights (specified by the experimenter) to reflect the relative importance of the individual criteria
composing (3). For instance, κ = (1, 0) reduces the compound criterion to (2) whereas κ = (0.5, 0.5) specifies equal weight
to both DP-efficiency and availability of degrees of freedom for lack-of-fit. Despite this modification, design construction
still critically depends on the choice of an a priori model.

The remainder of this article proceeds as follows. In Section 2, we propose a Bayesian modification to GT’s DP-optimality
criteria for constructing partially replicated screening designs. In Section 3, we compare designs of various run sizes using
measures of efficiency andmodelmisspecification. Consideration is given tomultiple criteria for design selection in Section 4.
Section 5 details the results of a small simulation study and Section 6 provides concluding remarks.

2. Bayesian D-optimal partially replicated screening designs

Aknowndrawback to the traditional optimal design approach is the required assumption that themodel is known. Tohelp
D-optimal designs overcome dependency on an assumedmodel, DuMouchel and Jones (1994) introduced a simple Bayesian
modification which involves classifying factorial effects of interest as either primary or potential. Primary terms are those
effects assumed to be active while potential terms may or may not be active. In this way, the design can be chosen such that
the primary terms are precisely estimated while still providing some information on potential terms. Furthermore, due to
the information provided by the prior distribution on the model parameters, the Bayesian D-optimal approach circumvents
the singularity problem of X ′X in situations where n < p.
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