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a b s t r a c t

The ability to simulate correlated binary data is important for sample size calculation and
comparison of methods for analyzing clustered and longitudinal data with dichotomous
outcomes. One available approach for simulating vectors of length n of dichotomous
random variables is to sample them from multinomial distribution of all possible length
n permutations of zeros and ones. However, the multinomial sampling method has only
been implemented in a general form (without making the initial restrictive assumptions)
for vectors of length 2 and 3 because constructing multinomial distribution is very
challenging for longer vectors. This difficulty can be overcome by presenting an algorithm
for simulating correlated binary data via multinomial sampling that can be easily used
for directly computing the multinomial distribution for any value of n. To demonstrate
the approach, vectors of length 4 and 8 are simulated for assessing the power during the
planning phase of a study and for evaluating the choice of working correlation structure in
an analysis with generalized estimating equations.

© 2017 Published by Elsevier B.V.

1. Introduction 1

Methods to simulate realizations of dependent variables with specified marginal means and pairwise correlations are 2

useful to assess semi-parametric approaches such as generalized estimating equations (GEE) (Liang and Zeger, 1986), 3

which only require models for the first two moments of the distribution of the outcome variable. Continuous variables 4

can be simulated via multivariate normal distribution that is determined by its mean and covariance matrix. In contrast, 5

dependent Bernoulli random variables present a greater simulation challenge due to the lack of an equally general and 6

flexible equivalent of the normal distribution for discrete data. 7

Several useful methods have been proposed; however, the best way to simulate correlated binary data remains an 8

active area of research in statistical literature. Bahadur (1961) developed an elegant representation of a correlated Bernoulli 9

distributionwith specifiedmarginalmeans and second- and higher-order correlations. However, complex constraints on the 10

correlations limit the use of Bahadur’s representation for the simulation of shorter vectors (Fitzmaurice and Molenberghs, 11

2009), or after simplifying the assumptions such as setting all third and higher order correlations to zero. Farrell and Rogers- 12

Stewart (2008) reviewedmethods to simulate correlated binary data, including an approach byQaqish (2003) that allows for 13

unstructured correlations and non-stationary data. Emrich and Piedmonte (1991) proposed a flexiblemethod for simulation 14

that is slightly complex because it involves solving non-linear equations via numerical integration. Al Osh and Lee (2001) 15

proposed an approach that relies on the association among random variables resulting from the sharing of some common 16
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components that induce correlation. Recently, Preisser and Qaqish (2014) compared the approach proposed by Qaqish1

(2003) with a method based on multivariate probit distribution.2

This manuscript proposes the simulation of Bernoulli random variables with specified marginal means and pairwise3

correlations via the multinomial sampling approach that considers ‘‘k-variate binary data as a multinomial distribution4

with 2k possible outcomes’’ (Kang and Jung, 2001). For paired data, Kang and Jung’s multinomial sampling approach5

is a special case of the simulation method proposed for bivariate binomial data by Hamdan and Nasro (1986, p. 751).6

Recently, Haynes et al. (2015) showed that multinomial sampling was comparable with the method proposed by Emrich7

and Piedmonte (1991), which Haynes et al. (2015) referred to as the gold-standard approach. (However, Haynes et al., 20158

also acknowledged that they did not compare it with the approach proposed by Qaqish, 2003.)9

Because themultinomial sampling approach involves complete specification of the underlying distribution of all possible10

permutations of zeros and ones, its use ensures that a valid multivariate parent distribution exists that is compatible with11

specified marginal means and covariance matrix. The lack of a compatible parent is not typically a concern for continuous12

variables because multivariate normal distribution is a possible valid parent even if it does not fit the data well. However,13

for discrete random variables there is no guarantee that a valid distribution exists for a givenmarginal mean and covariance14

pair (Chaganty and Joe, 2006). As discussed in Molenberghs (2010), although not fully specified, the parent distribution15

provides an estimation framework and probabilistic basis for semi-parametric methods such as GEE or the quasi-least16

squares approach (Chaganty, 1997; Shults and Chaganty, 1998; Chaganty and Shults, 1999, QLS) in the framework of GEE.17

From a practical perspective, Rochon (1998) cautioned that the additional constraints necessary to ensure a valid parent18

distribution should be evaluated during the planning phase of a study. For example, consider sample size calculation with19

a standard formula, such as the one provided in Diggle et al. (2002, p. 167). If means and correlations with no valid parent20

distribution are used, the formula will provide results; however, the results will be invalid and no warning will be provided.21

Assessing power using a method that simulates from a compatible parent distribution will ensure that the results are22

appropriate. Shults et al. (2009) suggested that a severe violation of constraints during the analysis could be considered23

as a rule-out criterion for the selection of a working correlation structure to describe the pattern of association in the data.24

Although themultinomial sampling approach is useful for assessing the parent distribution, it has not been implemented25

for vectors of length four ormore,without first simplifying assumptions such as the first-orderMarkov property (Shults et al.,26

2006, p. 13) or the exchangeability condition (Kang and Jung, 2001, Section 5). As explained by Haynes et al. (2015) (who27

simulated vectors of length 2 and 3), ‘‘the CDF for establishing decision rules becomes complicated for cases of four or more28

repeatedmeasures.While not impossible, constructing higher order joint probabilities can be computationally challenging’’.29

To overcome the difficulty described by Haynes et al. (2015), this paper presents an easy to implement algorithm for30

constructing higher order joint probabilities. The method is described in Section 2 and demonstrated in Section 3 for31

assessment of power and selection of a working correlation structure for GEE.32

2. Methods33

2.1. Notation and assumptions34

Let Y n = (Y1, . . . , Yn)
′ be an n × 1 vector of Bernoulli random variables Yj with marginal means E(Yj) = P(Yj = 1) = pj35

and variances Var(Yj) = pj qj, where qj = 1 − pj (j = 1, . . . , n). Let Rn = Corr(Y n) be the n × n correlation matrix of Y n,36

with (j, k)th entry as follows:37

Rn[j, k] = ρjk =
pjk − pjpk
√
pjpkqjqk

,38

where pjk = E(YjYk) = P(Yj = 1, Yk = 1).39

Letmod(x, y) represent the modulus of xwith respect to y, such that40

mod(x, y) = x − y floor(x/y),41

where floor(x/y) is an unique integer n such that n ≤ x/y < n + 1. Let Bn(i) be the length n binary representation of i − 142

that is expressed as an n × 1 vector (i = 1, . . . , 2n). For example, B3(2) =

1, 0, 0

′ is the length 3 binary representation of43

1 because 1 = 1 × 20
+ 0 × 21

+ 0 × 22. Furthermore, let Pn(i) = P(Y n = Bn(i)) (i = 1, . . . , 2n).44

2.2. Construction of multinomial distribution for Bernoulli vectors of length n45

Kang and Jung (2001) proposed an algorithm for simulating dependent Bernoulli random variables Y n via multinomial46

sampling, which can be described as follows with slightly different notation. To simulate a sample of size m, alternate m47

times between the following two steps. Step One: Simulate a value U from a uniform (0, 1) distribution. Step Two: Select48

sequence Bn(i) if Zn(i−1) ≤ U < Zn(i), where Zn(0) = 0 and Zn(i) =
i

j=0 Pn(j) for i = 1, . . . , 2n. The probability that Bn(i)49

is selected in Step Two is equal to the length of the interval [Zn(i − 1), Zn(i)⟩ = Zn(i) − Zn(i − 1) = Pn(i) (i = 1, . . . , 2n).50

This algorithm is easy to implement for n = 2 because the marginal means p1, p2 and the pairwise correlation ρ1251

can be used to easily construct the well-known bivariate Bernoulli distribution, for which P2(1) = q1 q2 + ρ12
√
p1q1p2q2;52

P2(2) = p1q2 − ρ12
√
p1q1p2q2; P2(3) = q1p2 − ρ12

√
p1q1p2q2; and P2(4) = p1p2 + ρ12

√
p1q1p2q2. Kang and Jung (2001)
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