
Computational Statistics and Data Analysis xx (xxxx) xxx–xxx

Contents lists available at ScienceDirect

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda

Weighted particle tempering
Marcos Carzolio ∗, Scotland Leman
Virginia Tech Department of Statistics, Hutcheson Hall, 250 Drillfield Drive, Blacksburg, VA 24061, USA

a r t i c l e i n f o

Article history:
Received 8 June 2016
Received in revised form 9 April 2017
Accepted 10 April 2017
Available online xxxx

Keywords:
Bayesian classification tree
Gaussian graphical model
Markov chain Monte Carlo
Multi-modality
Parallel algorithm

a b s t r a c t

The application of Bayesian methods often requires Metropolis–Hastings or related
algorithms to sample from an intractable posterior distribution. In especially challenging
cases, such as with strongly correlated parameters or multimodal posteriors, exotic
forms of Metropolis–Hastings are preferred for generating samples within a reasonable
time. These algorithms require nontrivial and often prohibitive tuning, with little or no
performance guarantees. In light of this difficulty, a new, parallelizable algorithm called
weighted particle tempering is introduced.Weighted particle tempering is easily tuned and
suitable for a broad range of applications. The algorithmworks by runningmultiple random
walkMetropolis chains directed at a tempered version of the target distribution, weighting
the iterates and resampling. The algorithm’s performance monotonically improves with
more of these underlying chains, a feature that simplifies tuning. Through the use of
simulation studies, weighted particle tempering is shown to outperform two similar
methods: parallel tempering and parallel hierarchical sampling. In addition, two case
studies are explored: breast cancer classification and graphical models for financial data.

© 2017 Published by Elsevier B.V.

1. Introduction 1

Since the inception of the Metropolis algorithm (Metropolis et al., 1953) and the Gibbs sampler (Geman and Geman, 2

1984), the scientific literature has seen an explosion of Markov chain Monte Carlo (MCMC) techniques for statistical 3

inference. For details, Tierney (1994) is an excellent introduction to MCMC and many of its important features. It suffices 4

to say that the underlying goal of statistical simulation is usually to characterize an unknown or complicated target 5

distribution—usually a posterior. MCMC sets up aMarkov chainwhose stationary distribution is the distribution in question. 6

Given enough iterations, a properly tuned MCMC will produce dependent random draws from its target distribution. We 7

propose a newMCMC algorithm called weighted particle tempering, whose two major strengths over popular methods are 8

simpler implementation (due to monotonicity in tuning) and scalability via parallelization. Weighted particle tempering 9

performs well in a broad set of applications, and it is therefore an attractive alternative to other algorithms that are often 10

time consuming to tune. 11

Several issues may arise that hinder the performance of an MCMC algorithm. Multimodal distributions, for example, 12

provide a challenge for locally updated MCMC algorithms, since these algorithms get trapped in local modes. As a result, 13

the researcher must choose between running the MCMC for an impractically long time to reduce Monte Carlo variance, or 14

moving on to a more sophisticated algorithm altogether. Multimodal target distributions appear in many applications, such 15

as in evolutionary or physical systems modeling, time series forecasting, or mixture models. 16

There are many methods that explore multimodal distributions well, starting with replica exchange Monte Carlo 17

(Swendsen and Wang, 1986). Metropolis coupled MCMC (Geyer, 1991), more commonly known as parallel tempering, 18

∗ Correspondence to: 9 Christopher St., Apt. 9, New York, NY 10014, USA.
E-mail address: cmarcos8@vt.edu (M. Carzolio).

http://dx.doi.org/10.1016/j.csda.2017.04.005
0167-9473/© 2017 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.csda.2017.04.005
http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
mailto:cmarcos8@vt.edu
http://dx.doi.org/10.1016/j.csda.2017.04.005


2 M. Carzolio, S. Leman / Computational Statistics and Data Analysis xx (xxxx) xxx–xxx

was originally introduced for maximum likelihood inference in Ising models. Simulated tempering (Marinari and Parisi,1

1992) shortly followed, and its connection to parallel tempering was developed in Geyer and Thompson (1995). A cousin2

of simulated tempering, the tempered transition algorithm, appeared in Neal (1996). Other important contributions to this3

field include multi-try Metropolis (Liu et al., 2000), evolutionary Monte Carlo (Liang and Wong, 2001), the equi-energy4

sampler (Kou et al., 2006), and more recently, the multiset sampler (Leman et al., 2009; Kim and MacEachern, 2015), and5

parallel hierarchical sampling (Rigat and Mira, 2012), among others. Usually these algorithms make sacrifices with respect6

to ease of implementation in order to improve performance. While increasing an algorithm’s complexity might improve7

its ability to explore multimodal distributions, doing so typically adds an implementational burden on the researcher. In8

addition to a boost in performance, a significant advantage of weighted particle tempering is a substantial decrease in the9

required amount of tuning relative to its competitors.10

Parallel tempering was one of the early solutions to the problem of sampling from multimodal distributions. The11

algorithm allows multiple particles to explore a ladder of tempered target distributions. Tempering flattens the landscape12

of a distribution so that bridges form between modes. Particles can traverse gaps between modes by visiting a rung on the13

ladder corresponding to a small tempering exponent (high temperature), then ‘‘cooling’’ back to the target distribution in14

a process analogous to metallurgic tempering. Mathematically, this is achieved by raising the target distribution to powers15

of the reciprocals of temperatures in a predefined sequence. The particles swap between adjacent steps on the ladder using16

Metropolis–Hastings acceptance rules.17

One major complication with parallel tempering is the tuning of the temperature ladder, a nontrivial task that requires18

selecting the number of rungs on the ladder, the step size between rungs, and parameters for the proposal distributions at19

each of the ladder steps. Some guiding principles have been established to tune the temperature ladder (Kone and Kofke,20

2005), while more recent methods have been proposed to adaptively optimize the ladder (Miasojedow et al., 2013).21

Another issue with parallel tempering is that, despite its name, it is not a computationally parallel algorithm since its22

chains must communicate with each other at every step. The result is a substantial increase in computation and time,23

while only samples from the untempered chain are stored. Some efforts have been made to incorporate a full simulated24

or parallel tempering sample in approximating an expectation or functional. Of note in recent literature is a method known25

as importance tempering (Gramacy et al., 2010), where importance weights are computed for each sample from the target26

distribution in a simulated tempering run in order to increase the effective sample size used for the estimate. This method27

is similar to ours in that weights are computed for each sample, and rather than discarding the samples from tempered28

chains, they are allowed to (potentially) contribute to the final estimate. While importance tempering provides an overall29

improvement over naive simulated tempering and presumably over parallel tempering, its performance hinges on optimal30

tuning of the temperature ladder as noted by the authors.31

Perhaps the most similar method to our own is parallel hierarchical sampling, which is a general way to utilize32

multipleMarkov chains, taking advantage of their differentmixing properties and reducing autocorrelation. Parallelization is33

complicated, however, by the communication among these chains at each step of the algorithm.We discuss how, in contrast,34

weighted particle tempering can be parallelized to take advantage of the increasingly affordable cost of computation.35

In this work, we compare our proposed algorithm to parallel tempering and parallel hierarchical sampling because of36

their similarity to our method and their popularity. Both algorithms require tuning of several chains and their associated37

parameters, such as proposal standard deviations. Tuning weighted particle tempering is simplified as introducing more38

underlying chains always improves mixing regardless of choice of tuning parameters—of which there are only two. In39

Section 2, we define our notation and review parallel tempering and parallel hierarchical sampling. We define weighted40

particle tempering in Section 3, illustrate its performance through simulation studies in Section 4, and we provide a few41

case studies with Bayesian CART (Section 5.1) and Gaussian graphical models (Section 5.2). A proof of detailed balance is42

found in the Appendix. Finally, wewrap upwith a brief discussion on limitations andwhat remains to be shown (Section 6).43

2. Notation and existing algorithms44

Itwill be useful to provide somegeneral notation anddefinitions for the three algorithmswe evaluate: parallel tempering,45

parallel hierarchical sampling, and weighted particle tempering. Each of these algorithms depends on p underlying particles,46

u1,t , . . . , up,t that evolve over the iterations t = 1, . . . ,N within their own respective chains. The final output of the47

algorithms is referred to as the mother chain, x1, . . . , xN . In some cases it will be convenient to refer to the mother chain48

as the zeroth chain, u0,1, . . . , u0,N . The (p + 1)-tuple

xt , u1,t , . . . , up,t


is a Markov chain, but the individual particles are49

themselves non-Markovian.50

We use π to denote the target distribution and πν with subscript ν ∈ [0, 1] to denote the normalized, tempered target.51

That is πν(x) = πν (x)
Z(ν)

, where52

Z(ν) =


Ω

π ν(x)dx <∞ (1)53

is the normalizing constant and Ω is the sample space. In certain applications, tempering the target distribution gives a54

divergent integral in Eq. (1), so the requirement of a finite Z(ν) is necessary for πν to be a proper distribution and essential55

for parallel tempering and weighted particle tempering to work.56



Download English Version:

https://daneshyari.com/en/article/4949254

Download Persian Version:

https://daneshyari.com/article/4949254

Daneshyari.com

https://daneshyari.com/en/article/4949254
https://daneshyari.com/article/4949254
https://daneshyari.com

