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a b s t r a c t

In real applications of small area estimation, one often encounters data with positive
response values. The use of a parametric transformation for positive response values in
the Fay–Herriot model is proposed for such a case. An asymptotically unbiased small
area predictor is derived and a second-order unbiased estimator of the mean squared
error is established using the parametric bootstrap. Through simulation studies, a finite
sample performance of the proposed predictor and the MSE estimator is investigated. The
methodology is also successfully applied to Japanese survey data.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction 1

Sample surveys are indispensable to estimate various characteristics of a population of interest. However, reliability 2

of estimates from sample surveys depends on sample sizes, and direct estimates from small sample surveys have large 3

variability, which is known as a small area estimation problem. In small area estimation methodology, a model-based 4

approach has become very popular to produce indirect and improved estimates by ‘borrowing strength’ from related areas. 5

Importance and usefulness of the model-based small area estimation approach has been emphasized in the literature. For a 6

recent comprehensive review of small area estimation, see Pfeffermann (2014) and Rao and Molina (2015). 7

To describe the detailed setting, we define yi as the direct survey estimator of the areamean θi, noting yi is often unstable 8

because of small area sample sizes. For producing a reliable estimate of θi, the most famous and basic small area model is 9

the Fay–Herriot (FH) (Fay and Herriot, 1979) described as 10

yi = xtiβ + vi + εi, i = 1, . . . ,m, (1.1) 11

where vi ∼ N(0, A) and εi ∼ N(0,Di) for known Di’s, and the quantity of interest is θi = xtiβ + vi. It is well known that the 12

best predictorθi that minimizes the mean squared error is expressed as 13θi = γiyi + (1 − γi)xtiβ, 14

which is a weighted combination of the direct estimator yi and the synthetic part xtiβ with weight γi = A/(A + Di). The 15

weight is a decreasing function of Di so that the weight on synthetic part xtiβ is large when yi is not reliable, that is, the 16
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sampling variance Di is large. Since it depends on unknown parameters β and A, the practical form ofθi is obtained by1

plugging estimatorsβ andA intoθi, namely2

θi = γiyi + (1 −γi)xtiβ =

Ayi + DixtiβA + Di
,3

which is called the empirical best linear predictor (EBLUP).4

Until now, the EBLUP and the related topics have been extensively studied in the framework of the Fay–Herriot model.5

Chatterjee et al. (2008) and Diao et al. (2014) proposed the empirical Bayes confidence intervals of θi with second-order6

refinement. Li and Lahiri (2010) and Yoshimori and Lahiri (2014) were concerned with the problem of estimating the7

variance parameter A avoiding 0 estimate. Moreover, Ghosh et al. (2008) and Sinha and Rao (2009) suggested some robust8

estimating methods for the Fay–Herriot model. The Fay–Herriot model and EBLUP are simple and useful methods, but the9

setting of the Fay–Herriot model is sometimes inadequate for analysis of real data. Therefore, several extensions of the10

Fay–Herriot model have been proposed. Opsomer et al. (2008) suggested a nonparametric small areamodel using penalized11

spline regression. In relation to the assumption of known Di’s, Gonzàlez-Manteiga et al. (2010) proposed a nonparametric12

procedure for estimating Di, and You and Chapman (2006) and Maiti et al. (2014) considered shrinkage estimation of Di by13

assuming a hierarchical structure forDi. Ybarra and Lohr (2008) and Arima et al. (2015) were concernedwith the problem of14

measurement error in covariate xi. Datta et al. (2011) and Molina et al. (2015) suggested procedures of preliminary testing15

for existence of the random effect vi. Datta and Mandal (2015) proposed a mixture of two models; one includes a random16

effect and the other does not include a random effect. Although all these papers treat important problems, the response17

values of the data are assumed to be normally distributed.18

However, we often encounter positive-valued data (e.g. income, expense), which have skewed distributions and non-19

linear relationships with covariates. For such a data set, the traditional Fay–Herriot model with a linear structure between20

response values and covariates and a normally distributed error term is not appropriate. A typical alternative approach is21

using the log-transformed response values as discussed in Slud and Maiti (2006), but the log-transformation is not always22

appropriate and it may produce inefficient and biased prediction when the log-transformation is misspecified. Thus, a23

natural way to solve this problem is using a parametric family of transformations which enables us to select a reasonable24

transformation based on data. A famous family is the Box–Cox transformation (Box and Cox, 1964) defined as25

hBC
λ (x) =


λ−1(xλ

− 1) λ ≠ 0
log x λ = 0.26

However, it suffers from a truncation problem that the range of the Box–Cox transformation is not the whole real line if27

λ ≠ 0, which leads to inconsistency of themaximum likelihood estimator of λ. Moreover, the inverse transformation cannot28

be defined onwhole real line, so thatwe cannot define a back-transformed predictor in the original scale. Alternatively, Yang29

(2006) suggested a novel family of transformations called the dual power transformation (DPT):30

hλ(x) =


(2λ)−1(xλ

− x−λ) λ > 0
log x λ = 0,31

which can be seen as the average of two Box–Cox transformations, namely hλ(x) = {hBC
λ (x)+hBC

−λ(x)}/2. Themain advantage32

of the DPT is that its range is the whole real line for all λ ≥ 0 so that DPT does not suffer from the truncation problem.33

Sugasawa and Kubokawa (2015) proposed the Fay–Herriot model in which response variables are transformed by general34

parametric transformations. In this paper, we focus on the FH model with DPT transformation described as35

hλ(yi) = xtiβ + vi + εi, i = 1, . . . ,m, (1.2)36

where vi ∼ N(0, A) and εi ∼ N(0,Di) for known Di’s.37

Although Sugasawa and Kubokawa (2015) derived EBLUP of θi = xtiβ + vi and the MSE estimator, the parameter of most38

interest in the model (1.2) is µi = h−1
λ (θi) rather than θi, where h−1

λ (·) is the inverse transformation of DPT:39

h−1
λ (x) =


λx +


λ2x2 + 1

1/λ
.40

Thus, the method developed in Sugasawa and Kubokawa (2015) is not enough for practical applications. In this paper, we41

focus on the prediction of µi with its risk evaluation. Specifically, we derive the best predictor of µi as the conditional42

expectation and the empirical best predictor by plugging the parameter estimates in the best predictor. For risk evaluation,43

we construct a second order unbiased MSE estimator based on the parametric bootstrap.44

The paper is organized as follows. In Section 2, we derive the best predictors of µi as well as the maximum likelihood45

estimation of model parameters. A second-order unbiased estimator of themean squared error of the small area predictor is46

derived based on the parametric bootstrap. In Sections 3 and 4,we show some simulation studies and empirical applications,47

respectively. In Section 5, we give some concluding remarks. The technical details are given in the Appendix.48
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