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a b s t r a c t

Thiswork is concernedwith feature screening for linearmodelwithmultivariate responses
and ultrahigh dimensional covariates. Instead of utilizing the correlation between every
response and covariate, the linear space spanned by the multivariate responses is
considered in this paper. Based on the projection theory, each covariate is projected on
the linear space spanned by the multivariate responses, and a new screening procedure
called projection screening (PS) is proposed. The sure screening and ranking consistency
properties are established under some regular conditions. To solve some difficulties in
marginally feature screening for linear model and enhance the screening performance of
the proposed procedure, an iterative projection screening (IPS) procedure is constructed.
The finite sample properties of the proposed procedure are assessed by Monte Carlo
simulation studies and a real-life data example is analysed.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction 1

Recent rapid advances of scientific techniques have led to data explosion in many fields, where ultrahigh dimensionality 2

of predictors becomes a significant character; examples can be seen in genomics, imaging and finance, to name but a few. 3

When the number of predictors p is much larger than the sample size n, many statistical methods cannot be applied. To 4

make the underdetermined statistical inference possible for ultrahigh dimensional problems, sparsity assumption that only 5

a small set of important variables contributes to the response was proposed. This leads that feature screening and variable 6

selection play important roles in ultrahigh dimensional problems. 7

There are numerous statistical literatures related to variable selection for various models, such as the Lasso (Tibshirani, 8

1996), the smoothly clipped absolute deviation (SCAD) (Fan and Li, 2001), the elastic net (Zou andHastie, 2005), the adaptive 9

Lasso (Zou, 2006), the Dantzig selector (Candes and Tao, 2007), the MCP (Zhang, 2010) and so on. However, the methods 10

introduced abovemay not performwell when log(p) = O(na), for some a ∈ (0, 1/2) for ultrahigh dimensional data because 11

of the simultaneous challenges of computational cost, statistical accuracy and algorithmic stability (Fan et al., 2009). 12

These challenges call for new statistical techniques for ultrahigh dimensional data. Marginal feature screening becomes 13

indispensable and has caused much attention since that Fan and Lv (2008) proposed the feature screening approach for 14

the linear model called sure independence screening (SIS) and demonstrated that SIS could theoretically filter out many 15

irrelevant variables and keep all relevant variables. Fan et al. (2009) proposed a nonparametric independence screening 16

(NIS) procedure for additive models based on B-splines method. Fan and Song (2010) developed a maximum marginal 17

likelihood screening procedure for generalized linear models. Zhu et al. (2011) proposed a sure independent ranking and 18

screening (SIRS) procedure to screen significant predictors inmulti-indexmodels under some linearity assumptions, and the 19

screening procedure satisfied the ranking consistency property. Li et al. (2012a) proposed a robust rank correlation screening 20
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procedure based on the Kendall τ rank correlation for semiparametricmodels such as transformation regressionmodels and1

single-index models. Mai and Zou (2012) proposed a variable screening method for binary classification with ultrahigh2

dimensional predictors based on the Kolmogorov–Smirnov test. Liu et al. (2014) developed a marginal sure screening3

procedure for varying coefficientmodels based conditional Pearson correlation. Lai et al. (2017) proposed a feature screening4

technique for the ultrahigh dimensional data with responses missing at random.5

All the aforementioned screening procedures only handle univariate responses. However, feature screening for6

multivariate responses or grouped predictors is often of great interest in some scientific fields, such as pathway analyses.7

Li et al. (2012b) developed a model-free feature screening procedure for ultrahigh dimensional data based on distance8

correlation (DC), which could be used for multiple responses and grouped predictors. DC is a measurement to evaluate9

the dependence relationship between two random vectors, but its computational cost may be expensive when sample size10

n or dimension of random vector is large. Investigating the relationship between the response and predictor in linear model11

is an extremely important and widely studied statistical problem, from the point of view of both practical applications12

and theory. In this paper, we consider the ultrahigh dimensional linear model with multivariate responses and aim to13

propose a new feature screening procedure. In order to measure the relationship between the predictor and multivariate14

responses simultaneously, we attempt to construct a new screening index using the projection of each predictor onto the15

space spanned by multivariate responses. To make each predictor on the same criterion for measurement, we standardize16

each predictor with mean 0 and variance 1 and use the norm-squared of projection as a screening index. Then we show that17

new index shares the sure screening property under certain conditions. Similarly to the iterative SIS and SIRS procedures18

(Fan and Lv, 2008; Zhu et al., 2011), we also propose an iterative algorithm of our new screening method. This is due to19

the fact that irrelevant variables which are highly correlated with the relevant variables can have a high priority for being20

selected in marginal screening procedure and a relevant variable can be marginally uncorrelated but jointly correlated with21

the response. The iterative procedure is used to resolve this issue effectively. Computationally, the proposed screening22

procedure is very simple and fast to implement.23

The rest of this paper is organized as follows. In Section 2, we describe the methodological details of the PS and further24

study its theoretical property. In Section 3, the finite sample performance is studied by Monte Carlo simulations and a real25

data analysis. Section 4 concludes the paper. All proofs are given in the Appendix.26

2. Projection Screening (PS)27

2.1. Method28

Consider linear model with multivariate responses29

y = B⊤X + ε,30

where response vector y = {Y1, . . . , Yq}
⊤, B = (βjk)

p×q, j = 1, . . . , p, k = 1, . . . , q, is a matrix of coefficients,31

X = {X1, . . . , Xp}
⊤ is p-dimensional covariate vector, ε = (ε1, . . . , εq)

⊤ is the random error vector with mean 0(q×1),32

and each εk has finite variance σ 2
k , k = 1, . . . , q. Without loss of generality, we assume that E(Xj) = 0 and Var(Xj) = 1 for33

j = 1, . . . , p, and this leads that E(Yj) = 0.34

This paper aims to investigate the correlation between y and Xj, j = 1, . . . , p. Instead of considering the correlation35

between response Yk, k = 1, . . . , q and covariate individually, our paper is concerned with correlation between the linear36

space H spanned by the multivariate responses and covariate. H = {a⊤y : for any a ∈ Rq
}. Assume that there is no37

collinearity among Yk’s, then the dimension of H is identically equal to q. More strictly, we assume B⊤B is non-singular.38

Based projection theory, we can project each covariate on the linear spaceH and use the projection to construct a screening39

index. The projection of Xj onto the linear space H is given by40

X∗

j = E(Xjy⊤)(Eyy⊤)−1y,41

which leads us to utilize the norm-squared of this projection as a marginal utility screening index42

ωj = E(Xjy⊤)(Eyy⊤)−1E(yXj). (2.1)43

Intuitively, if Xj and all Yk’s, k = 1, . . . , q are linearly independent, then Xj⊥H and ωj = 0. On the other hand, if Xj and44

some Yk’s are linearly correlated, there exists aj ≠ 0(q×1) such that X∗

j = a⊤

j y, hence ωj must be positive. This remarkable45

property allows us to utilize ωj to conduct a feature screening procedure for linear model with multivariate responses.46

We denote the sample design matrix of X as U = (U1, . . . ,Up), where Uj = (X1j, . . . , Xnj)
⊤, j = 1, . . . , p. Let47

V = (V1, . . . , Vq) denote the sample matrix of y, where Vk = (Y1k, . . . , Ynk)
⊤, k = 1, . . . , q. We assume that the estimator48

of (Eyy⊤)−1 exists when q ≤ n. We next derive the sample estimate of ωj to rank all the predictors,49

ω̂j =


1
n
U⊤

j V


1
n
V⊤V

−1 1
n
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. (2.2)50
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