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a b s t r a c t

The question of testing the homogeneity of distributions is studied when there is an
excess of zeros in the data. In this situation, the distribution of each sample is naturally
characterized by a non-standard mixture of a singular distribution at zero and a positive
component. Tomodel the positive components, a semiparametricmultiple-sample density
ratio model is employed. Under this setup, a new empirical likelihood ratio (ELR) test
for homogeneity is developed and a χ2-type limiting distribution of the ELR is proved
under the homogeneous null hypothesis. A nonparametric bootstrap procedure is proposed
to calibrate the finite-sample distribution of the ELR. It is shown that this bootstrap
procedure approximates the null distribution of the ELR test statistic under both the null
and alternative hypotheses. Simulation studies show that the bootstrap ELR test has an
accurate type I error, is robust to changes of underlying distributions, is competitive to,
and sometimes more powerful than, several popular one- and two-part tests. A real data
example is used to illustrate the advantage of the proposed test.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Multiple groups of samples, with excess zero observations, are commonly encountered in many research fields, such
as the life sciences (Taylor and Pollard, 2009; Wagner et al., 2011), epidemiology (Bascoul-Mollevi et al., 2005; Bedrick
and Hossain, 2013), meteorology (Muralidharan and Kale, 2002), health economics (Tu and Zhou, 1999; Zhou and Tu,
1999), reliability (Lambert, 1992), and tobacco consumption (Johnson et al., 2015). For example, while monitoring rainfall
distribution, Muralidharan and Kale (2002) presented a data set with daily rainfall measurements recorded over several
years. There were often dry days which were recorded as having zero rainfall. Similarly, Zhou and Tu (1999) provided an
example from the assessment of medical care expenditures, where the observations came from a control group and several
intervention groups. In each group, amajority of inpatients had zero cost due to having no hospitalizations during the study.

Given multiple groups with excess zero observations, one fundamental problem is to test the homogeneity of their
distributions (Lachenbruch, 1976, 2001, 2002; Tse et al., 2009; Bedrick and Hossain, 2013; Johnson et al., 2015). Specifically,
suppose we havem + 1 independent groups of samples distributed as follows:

xi1, . . . , xini ∼ Fi(x) = νiI(x = 0) + (1 − νi)I(x > 0)Gi(x), i = 0, . . . ,m, (1)

∗ Corresponding author. Fax: +1 519 746 1875.
E-mail address: pengfei.li@uwaterloo.ca (P. Li).

http://dx.doi.org/10.1016/j.csda.2017.04.011
0167-9473/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.csda.2017.04.011
http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csda.2017.04.011&domain=pdf
mailto:pengfei.li@uwaterloo.ca
http://dx.doi.org/10.1016/j.csda.2017.04.011


C. Wang et al. / Computational Statistics and Data Analysis 114 (2017) 146–157 147

where ni is the ith group’s sample size, I(·) is an indicator function and the Gi(·)’s are cumulative distribution functions with
common support which may be continuous or discrete. In this paper, we concentrate on continuous distributions Gi(·)’s
whose support consists of all positive real numbers; but we propose, in Section 5, how themethod can be applied to discrete
distributions. For random samples with excess zero observations, the zero outcomes, in fact, contain valuable information
and thus should not be simply discarded. The above formulation, (1), which is a non-standardmixturemodel of a pointmass
distribution at zero and a continuous positive component, is an intuitive way to account for the unique features of such data.
Our interest is to test whether the m + 1 mixture distributions Fi’s are homogeneous, i.e., test whether F0 = · · · = Fm, or
equivalently, ν0 = · · · = νm and G0 = · · · = Gm.

In the literature, two-part tests have been widely used to compare groups of samples from the non-standard mixture
structure (1). For example, Lachenbruch (2001, 2002) comprehensively studied two-part tests for two such populations.
A two-part test is a two degrees of freedom test based on the sum of a test statistic for the equality of the proportions of
zero counts and a conditional χ2-test statistic for the positive part. The test for the latter part may be a nonparametric
Wilcoxon–Mann–Whitney rank sum test or a two-sample t-test. If more than two populations are under consideration,
we can replace these tests with a Kruskal–Wallis test or an ANOVA F-test, respectively. On the other hand, a parametric
likelihood ratio test can also be used for the second part after assuming a parametric form on the nonzero data, such as a
log-normal distribution or a gamma distribution. The two-part tests and their extensions have been successfully
implemented in various applications; see for example, Bascoul-Mollevi et al. (2005), Taylor and Pollard (2009), andWagner
et al. (2011). Further ideas and comparisons of some existing one- and two-part procedures may be found in Delucchi and
Bostrom (2004), Hallstrom (2010), and Zhang et al. (2010).

In numerical studies (see Section 3 and supplementary material, Appendix A), we show that the existing two-part
tests are either inefficient when no parametric assumptions are made for the positive components or are not robust
when the parametric models are assumed. In many applications, multiple populations may naturally share some common
characteristics. It is therefore desirable to borrow efficiency across similar populations to improve testing power. At the
same time, we also hope that a test is robust to deviations from the model assumptions. The semiparametric density ratio
model (DRM) of Anderson (1979), which gained popularity after Qin and Zhang (1997), is a natural tool to use here. We
propose to model the distributions of the positive components in (1), by the DRM to exploit information from all available
samples. Let dGi(x) denote the density of Gi(x) for i = 0, . . . ,m. The DRM postulates that

dGi(x) = exp{αi + β⊤

i q(x)}dG0(x), i = 0, . . . ,m, (2)

for a non-trivial, pre-specified, basis function q(x) of dimension d, and unknown parameters αi and βi. Clearly, α0 = 0 and
β0 = 0 for an arbitrarily selected baseline group. Without specifying the baseline density dG0(x), we propose a test based
on the DRM defined in (2) that does not depend on the form of G0(x) and hence is robust to the assumptions on G0(x).

The DRM is flexible and includesmany parametric distribution families, such as the log-normal and gamma distributions,
as special cases. In the literature, the DRM has been recognized as a powerful semiparametric tool in many statistical
problems. For example, Qin and Zhang (1997) and Zhang (2002) showed the close relationship between the DRMand logistic
regression models, and they further developed procedures to assess the goodness-of-fit of the logistic regression models
based on case-control data. Qin (1999) and Zou et al. (2002) applied the DRM to a semiparametric mixture model. Fokianos
et al. (2001) and Cai et al. (2017) considered hypothesis testing problems under the DRMwithout excess zero observations.
Other recent publications include Chen and Liu (2013), who discussed quantile and quantile-function estimation under the
DRM, and de Carvalho and Davison (2014), who considered modelling several multivariate extremal distributions by the
DRM. To the best of our knowledge, theDRMhas not been used inmodellingmultiple sampleswith excess zero observations.

Under this semiparametric setup, the empirical likelihood method (Owen, 2001) provides an effective platform for data
analysis. We propose an empirical likelihood ratio (ELR) test for homogeneity under (1) and (2). We show that the proposed
ELR test is also a two-part test: the first part tests the equality of zero proportions νi’s and the second part tests homogeneity
in the continuous components of the model. We show that the asymptotic null distribution of the ELR is of χ2-type as the
total sample size goes to infinity.We also explore using a nonparametric bootstrap procedure to calibrate the distributions of
the proposed test statistic in finite-sample situations. This bootstrap procedure is shown to approximate the null distribution
of the ELR test statistic for data generated from both the null and alternative hypotheses. Software implementing the
bootstrap ELR test has been developed in the R language (R development core team, 2014) and is available in the online
supplementary material (see Appendix A).

We note that developing the limiting distribution of the ELR is technically challenging. First, in the second part of the ELR,
the number of observations, i.e., the number of positive observations in each group, is a random number, and thus this case
differs from thework of Fokianos et al. (2001), Zhang (2002) and Cai et al. (2017). In particular, we have to deal with random
sums of independent and identically distributed random variables. Second, the two parts of the ELR both have χ2-type null
limiting distributions. Hence we need to show their asymptotic independence so that their summation still has a χ2-type
null limiting distribution. We comment that investigating the asymptotic properties of the bootstrap procedure under both
the null and alternative hypotheses is also technically challenging. Existing results may not be directly applied. We refer to
Janssen and Pauls (2003) for more discussion.

We further note that under the null hypothesis of homogeneity, the DRM in (2) is automatically satisfied regardless of the
choice of basis function q(x). This is because the null hypothesis corresponds to a reduced form of the DRM with all αi = 0
and βi = 0. This property is attractive because it ensures that the asymptotic size of the test can always be controlled at
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