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a  b  s  t  r  a  c  t

New  heuristic  filters  are  proposed  for state  estimation  of  nonlinear  dynamic  systems  based  on  particle
swarm  optimization  (PSO)  and  differential  evolution  (DE).  The  methodology  converts  state  estimation
problem  into  dynamic  optimization  to find  the  best  estimate  recursively.  In  the  proposed  strategy  the
particle  number  is adaptively  set  based  on  the  weighted  variance  of the  particles.  To  have  a  filter  with
minimal  parameter  settings,  PSO  with  exponential  distribution  (PSO-E)  is selected  in  conjunction  with
jDE  to  self-adapt  the  other  control  parameters.  The  performance  of  the  proposed  adaptive  evolutionary
algorithms  i.e. adaptive  PSO-E,  adaptive  DE  and adaptive  jDE  is  studied  through  a  comparative  study
on  a suite  of well-known  uni- and  multi-modal  benchmark  functions.  The  results  indicate  an  improved
performance  of the  adaptive  algorithms  relative  to original  simple  versions.  Further,  the  performance  of
the proposed  heuristic  filters  generally  called  adaptive  particle  swarm  filters (APSF)  or  adaptive  differ-
ential  evolution  filters  (ADEF)  are  evaluated  using  different  linear  (nonlinear)/Gaussian  (non-Gaussian)
test  systems.  Comparison  of the  results  to those  of  the  extended  Kalman  filter,  unscented  Kalman  filter,
and  particle  filter  indicate  that  the  adopted  strategy  fulfills  the  essential  requirements  of accuracy  for
nonlinear  state  estimation.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Successful control of many closed loop dynamic systems relies
on exact and complete knowledge of the system states. Lack of
proper information in the feedback signals results in ineffective
control law. Unfortunately, for many physical systems not all states
are measurable due to restrictions on the utilized sensors such as
cost and/or weight. Therefore, state estimation or in other words fil-
tering out the bad information from the available noise-corrupted
measurements is an essential task for all controlled dynamic sys-
tems. On-line state estimation enhances system security, data
accuracy and reduces the cost of the measurement package due
to requiring less measurement sensors.

State estimation problem has been in the center of attention
for many years. Dynamic system state estimation has been usually
formulated as a weighted least squares problem. This widespread
method is considered as a batch estimator that uses the complete
history of measurements to estimate the unknown states. In com-
parison to the batch strategies, recursive filters receive and process
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measurements sequentially and as such are regarded more impor-
tant and useful. Every progressive step of a recursive filter consists
of two stages: prediction and data assimilation. Prediction prop-
agates the system states from a time step to the next one ahead,
while data assimilation is employed to refine the predicted states
utilizing the new measurements. Fortunately, there exist various
schemes in the literature for state estimation of nonlinear dynamic
systems. Although, Extended Kalman filter (EKF) [1] is the sim-
plest and the most utilized nonlinear filter applied to different
systems, it suffers from two important drawbacks. First, it is prone
to divergence as it is based on linearization of nonlinear dynamics
and measurement functions. Second, it is only suitable for systems
with Gaussian noise models. Other nonlinear filters have been pre-
sented to remedy these weaknesses. Unscented Kalman filter (UKF)
[2], the next well-known nonlinear filter, originates from the idea
that approximating a Gaussian distribution is easier than approxi-
mating an arbitrary nonlinear function. In this regard, UKF removes
the need for linearization, while the assumption of Gaussian dis-
tribution is still kept. Particle filter (PF) family [3] is suggested to
complement UKF and to cope with its shortcomings. In contrast to
the EKF, as an analytical approach for state estimation, UKF and PF
are both sampling approaches to this aim. However, there exists a
fundamental difference between the two  latter. UKF is based on a
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deterministic sampling methodology, while samples are stochas-
tically generated in the PF. Therefore, PF can be considered as a
member of the newly defined class of heuristic filters.

In the simplest form of the PF, the particles are initially propa-
gated through the dynamic model and are next weighted according
to the likelihood function that determines how closely the particles
match the measurements. Subsequently, at the re-sampling step,
those that best match the measurements are multiplied and the
rest are discarded. Although due to novelty of the PF, its members
have received considerable attention in lots of different scientific
fields, there are still some outstanding difficulties with this method
such as sample impoverishment due to lack of population diversity.

As a characteristic of any sample based method, PF estima-
tion performance depends on the number of utilized particles as
well. Increasing the number of particles increases the estimation
accuracy to some extent, but at the same time results in a dra-
matic increase in run time, which is not desirable especially for
on-line applications. A more detailed review of literature reveals
that heuristic optimization methods such as particle swarm opti-
mization (PSO), genetic algorithm (GA), ant colony optimization
(ACO), etc. have been used to enhance the performance of the PF.
Zhong et al. [4] and Hao et al. [5] have tried using ACO to optimize
the re-sampling step in order to avoid the sample impoverishment
problem. In [5], the optimization allows the particles to move closer
to their local highest posterior density function, thus producing
a better estimation results. Zhang et al. [6] have combined PSO
with PF before re-sampling stage in order to increase diversity of
the particles. In [6], particles’ weights in PF are considered as the
fitness values in PSO, and the particles set which is formed after
re-sampling step is operated by PSO. This process caused the par-
ticles to move to a point with a higher fitness value. Yu et al. [7]
have incorporated ACO into PF in order to optimize the sampling
process. Unlike the standard PF, re-sampling is not required in their
scheme.

As it already mentioned, state estimation can be thought as a
stochastic dynamic optimization problem as well. In this context,
various kinds of powerful heuristic optimization methods can be
utilized to estimate the states of nonlinear dynamic systems.

Parpinelli et al. [8] has compared three swarm intelligence algo-
rithms of bacterial foraging optimization (BFO), PSO and artificial
bee colony (ABC) for the optimization of hard engineering prob-
lems. It is shown that PSO results in the best balance between
quality of solution and number of function evaluations.

According to [9], an appropriate initial population size plays a
key role in the effectiveness and efficiency in the performance of the
evolutionary algorithms such as PSO, differential evolution (DE),
etc. Therefore, a new method is presented in the current study that
allows setting the number of needed particles to search the state
space adaptively. In this paper, the sample size is determined based
on the weighted variance of the participating particles.

Leong and Yen [10] have presented a method to tune the swarm
size based on the rank and density of the population. The presented
algorithm has many parameters to set in advance that makes its uti-
lization complicated. Sun et al. [11] have also proposed a scheme
to improve the performance of PSO based on time-variant particle
population function, which makes the population decrease gradu-
ally in order to reduce the computational cost, and produce random
particles at periodical phases to avoid trapping in the local optima.

Coelho and de Oliveira [12] have introduced two usual ideas of
population resizing in GA to the PSO. The first idea controls the
birth and death of the particles at every generation; while the sec-
ond one increases the swarm size at initial iterations to enhance the
exploration and decreases it subsequently to improve the exploita-
tion capability. Applying these ideas to some benchmark functions
has shown the superiority of the first idea. Lei [13] has presented
two dynamic population size improvements for the standard PSO

Table 1
Pseudo code of the proposed APSO.

Begin
Parameters initialization
Population initialization and corresponding fitness evaluation
Determine the global best particle
for R = 1:[itermax/T]

for generation = 1:T
for i = 1:Population size

Update velocity and position of particles (according to pertinent PSO version)
Fitness evaluation
Update the personal best and global best positions

end
end
Rank population according to their fitness
Calculate weighted variance according to Eq. (7)
if ��ω (R,R−1)

�ω (R−1) > (1 + ε)
add particles

else if ��ω (R,R−1)
�ω (R−1) < (1 − ε)

remove worse particles
else

keep the population without any changes
end

end

as well. The first method starts with a small number of particles
and increases the number of particles iteratively, while the second
algorithm starts with a large number of particles and decreases the
swarm size gradually. Both methods result in reducing computa-
tional time, but the second method is more successful in converging
to the global optimum. Sample size is adaptively determined in [14]
based on a complicated combination of the density and the average
Hamming distance of particles.

In following, application of heuristic optimization methods for
state estimation will be reviewed briefly. Nobahari et al. [15], Heris
and Khaloozadeh [16] and Naka et al. [17] have proposed state esti-
mators based on the traditional ACO algorithm and in a framework
similar to the PF. Xu et al. [18] have used PSO to search the optimal
or near optimal parameters that produce desirable steady state fil-
ters such as �–� filter and �–�–� filter. Jeong and Park [19] have
used a hybrid PSO (HPSO) for a cluster of PC systems to minimize
the difference between measured and calculated state variables in
order to estimate the system states. Zhang et al. [20] have proposed
utilizing the Gaussian PSO to approximate the optimal solution

Table 2
Pseudo code of the proposed ADE.

Begin
Parameters initialization
Population initialization and corresponding fitness evaluation
Determine the best individual
for R = 1:[itermax/T]

for generation = 1:T
for i = 1:Population size

Mutation (DE/rand/1)
Crossover
Mapping the offspring onto the search space (if necessary)
Selection (offspring-parent competition)

end
end
Rank population according to their fitness
Calculate weighted variance according to Eq. (7)
if ��ω (R,R−1)

�ω (R−1) > (1 + ε)
add particles

else if ��ω (R,R−1)
�ω (R−1) < (1 − ε)

remove worse particles
else

keep the population without any changes
end

end
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