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a b s t r a c t

The first investigation is made of designs for screening experiments where the response
variable is approximated by a generalised linear model. A Bayesian information capacity
criterion is defined for the selection of designs that are robust to the form of the linear
predictor. For binomial data and logistic regression, the effectiveness of these designs for
screening is assessed through simulation studies using all-subsets regression and model
selection via maximum penalised likelihood and a generalised information criterion. For
Poisson data and log-linear regression, similar assessments are made using maximum
likelihood and the Akaike information criterion for minimally-supported designs that are
constructed analytically. The results show that effective screening, that is, high powerwith
moderate type I error rate and false discovery rate, can be achieved through suitable choices
for the number of design support points and experiment size. Logistic regression is shown
to present a more challenging problem than log-linear regression. Some areas for future
work are also indicated.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

An important problem in scientific discovery is to find those variables (or factors) that have a substantive influence on
an observed response through experiments on a possibly large set of potentially important variables. There has been much
research into such variable screening, or model selection, focussed on the design and analysis of experiments in which the
response variable is adequately approximated by a linear model (see Draguljić et al., 2014 andWoods and Lewis, 2016, and
references therein). Such experiments are used increasingly in scientific research and product development, for example, in
the pharmaceutical and chemical industries.

In many practical applications, for example when binary or count data are observed, a generalised linear model (GLM;
McCullagh and Nelder, 1989) may be needed to describe a response. Previous research on designs for model selection for
GLMs has focussed on experiments involving only a few variables through pairwise comparisons of a small number of
models (see, for example, López-Fidalgo et al., 2007 and Waterhouse et al., 2008). Hence, such methods are not applicable
to, or easily generalisable for, the screening problem. In the literature, the majority of multi-variable experimentation with
GLMs has employed (fractional) factorial designs, including examples on solder-joint defects (Hamada and Nelder, 1997),
windshield moulding, non-conforming tiles and semi-conductor defects (see Lewis et al., 2001). Although such designs are
effective for both model selection and estimation for normal-theory linear models, they have been shown to be inefficient
for experiments that provide non-normal data (Woods et al., 2006).
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In common with other non-linear models, for the GLMs considered in this paper the performance of a design depends
on the unknown values of the parameters in the model. One approach to overcoming this problem is to assume a particular
value for each parameter and hence obtain a ‘‘locally optimal’’ design; that is, a design that is optimal under a given
criterion provided the assigned parameter values are correct.We adopt the alternative approach ofmaking the less stringent
assumption of a prior distribution for each model parameter from which we obtain a ‘‘pseudo-Bayesian’’ design (Atkinson
and Woods, 2015).

In this paper, we investigate variable screening for GLMs with q independent variables, labelled x1, . . . , xq. In the jth
run (j = 1, . . . ,N) of the experiment, a treatment or combination of variable values xj = (x1j, . . . , xqj)T is applied to an
experimental unit and a univariate response, yj, is observed. We assume that |xij| ≤ 1 for i = 1, . . . , q; j = 1, . . . ,N .

The aim of the experiment is to identify those active variables having a substantial effect on the response variable and
to estimate efficiently a GLM involving those variables alone. For j = 1, . . . ,N , the yj have independent exponential family
distributions with expectation µj related to a linear predictor ηj = f (xj)Tβ via a link function, g(µj) = ηj. The vectors f (x)
and β are p × 1 vectors of known functions of x and unknown model parameters, respectively. We also assume that the
experimental units are exchangeable, in the sense that the distribution of the response to a treatment does not depend on
the unit to which the treatment is applied.

For canonical link functions, the log-likelihood may be written as

l(β; y) =

N
j=1


yjηj − b(ηj) + c(yj)


, (1)

where b(·) and c(·) are known functions of the linear predictor and response, respectively. For the binomial distribution and
the logistic link, b(ηj) = −nj log(1 + eηj) and c(yj) = log(nj!/[yj!(nj − yj)!]), with nj the number of Bernoulli trials made at
the jth run. For the Poisson distribution and the log link, b(ηj) = eηj and c(yj) = − log(yj!).

Maximum likelihood estimators (MLEs) β̂ can be found via (numerical) maximisation of (1). For small data sets, however,
the MLEs may have considerable bias. For sparse data, such as binomial data with small numbers, nj, of trials for each run,
one or more maximum likelihood estimates may be infinite, for example, as the result of separation of the responses into
zeros and ones via a hyperplane in the linear predictor (Silvapulle, 1981). To remove this bias and guarantee the existence
of estimates for GLMs with a canonical link function, Firth (1993) defined penalised maximum likelihood estimators β̃ as
maximisers of

l⋆(β; y) = l(β; y) +
1
2
log det


XTWX


, (2)

where X is the N × p model matrix with jth row f (xj)T and W = diag{var(yj)} (see also Kosmidis and Firth, 2009). This
estimation procedure is equivalent to finding the posterior mode of β assuming the Jeffreys prior distribution.

The information matrix XTWX , which is the asymptotic inverse variance–covariance matrix for both β̂ and β̃, is used to
define the D-optimality criterion. This criterion specifies selection of a design that maximises the objective function

φD(ξ) =
1
p
log det


XTWX


, (3)

where

ξ =


x1 · · · xn
ω1 · · · ωn


, (4)

x1, . . . , xn are the distinct treatments in the design (assumed, without loss of generality, to be applied to the first n runs
of the experiment), ωk > 0 ∈ N, and

n
k=1 ωk = N , the total number of runs. For the GLMs considered in this paper, (3)

depends on β through the matrix W and hence selection of a D-optimal design requires knowledge of the values of these
parameters. Thus a locally optimal design is obtained.

The relative performance of two designs, ξ1 and ξ2, under D-optimality may be assessed using relative D-efficiency,
defined as

DEff(ξ1, ξ2) = exp {φD(ξ1) − φD(ξ2)} , (5)

where 0 ≤ DEff(ξ1, ξ2). If ξ2 is a D-optimal design that maximises (3), then (5) provides an absolute measure of the
performance of design ξ1.

In this paper, we address the screening problem of model selection and estimation of parameters in the selected model.
We define, in Section 2, a Bayesian information capacity criterion that generalises D-optimality to provide model-robust
designs for GLMs. We also present and discuss a model selection strategy that uses all-subsets regression and suitable
penalties for model complexity. Sections 3 and 4 describe simulation studies of logistic and log-linear regression modelling,
respectively, which demonstrate and assess the effectiveness of the methods. In Section 5, we present some avenues for
future work to further develop methodology for screening experiments with non-normal data.
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