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a b s t r a c t

Studying the association between a phenotype and a number of genetic variants from case-
control data is an important goal in many genetic studies. Association analysis is often
carried out by testing the null hypothesis that two groups of multi-dimensional data are
generated by the same population. Testing based on genotype data is a challenging task as
the full likelihood of the data is usually intractable. This difficulty may be tackled by com-
posite likelihood (MCL) tests which do not entail the full likelihood. But currently available
MCL tests are subject to severe power loss for involving non-informative or redundant sub-
likelihoods. To reduce the power loss, a forward search and test method for simultaneous
powerful group difference testing and informative sub-likelihoods composition is devel-
oped. The newmethod constructs a sequence ofWald-type test statistics by including only
informative sub-likelihoods progressively so as to improve the test power under local spar-
sity alternatives. Numerical studies show it achieves considerable improvement over the
available tests as the modeling complexity grows. The new method is illustrated through
an analysis of genotype data from a case-control study on breast cancer.

Crown Copyright© 2016 Published by Elsevier B.V. All rights reserved.

1. Introduction 1

Testing population difference between two groups of multivariate data is common in many fields of statistical research. 2

Due to the significant development of data acquisition technologies in recent years, more and more complex data – 3

e.g. involving temporal or spatial dependence among the sample units – can now be readily collected for statistical analysis. 4

However, this entails the use of tractable statistical models that are not easily available. In particular, it may be difficult 5

or even impossible to specify the full likelihood function for testing the group difference. These challenges are common in 6

analyzing case-control data in genotype–phenotype association studies, where for example we test associations between 7

a binary breast cancer phenotype and various genotype variants known as the single nucleotide polymorphisms (SNPs). 8

Note that testing genotype–phenotype association from case-control data can be formulated as a two-sample statistical test 9

problem. But association testing for many genotype variants altogether entails a high-dimensional statistical model, and 10

makes it difficult to formulate a computationally tractable full likelihood (Han and Pan, 2012). 11

These issues naturally suggest approximating the full likelihood function by a computationally tractable one for 12

constructing the test statistics for association testing. Awell-developed approximation is based on themaximum composite 13

likelihood estimator (MCLE), obtained by maximizing the product of low-dimensional sub-likelihood objects instead of the 14

full likelihood. Besag (1974) proposed composite likelihood estimation for spatial data while Lindsay (1988) developed 15

composite likelihood estimation in its generality. Over the years, composite likelihoodmethods have proved useful in many 16
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applied fields, including geo-statistics, spatial extremes and statistical genetics. See Varin et al. (2011) for a comprehensive1

survey on methods and applications.2

Like the familiar maximum likelihood estimator (MLE), the MCLE is asymptotically unbiased and normally distributed3

under regularity conditions. This feature, being beneficial for constructingWald-type statistics for testing group differences4

(see Geys et al., 1999 and Molenberghs and Verbeke, 2005 among others), can also be used in MCLE based testing. The5

standard approach here is to form a statistic using all the available data-subsets (so that theMCLE is computed by combining6

all the feasible sub-likelihood components). Although the resulting Wald test has known null distribution in the limit due7

to the asymptotic normality of MCLE, it may exhibit unsatisfactory power when the number of parameters in the model is8

moderate or large relative to the sample size.9

In our view, forming a test statistic using all the available sub-likelihoods is not always well-justified from either10

a statistical or computational perspective. Specifically, when the noise in the data is evident and the statistical model11

considered is very complex, inclusion of sub-likelihoods that do not explain group differences will mainly be adding noise12

to the Wald statistic. Clearly, this unwanted noise has the undesirable effect of deteriorating the overall test power. A13

better strategy would be to choose only informative sub-likelihoods relevant to group differences, while dropping noisy14

or redundant components as much as possible.15

Prompted by the above discussion, we propose a new approach – referred to as the forward step-up composite likelihood16

(FS-CL) testing – for group difference testing. Given a set of candidate data subsets used for constructing the sub-likelihood17

objects, our FS-CLmethod carries out simultaneous testing and data noise reduction by selecting a best set of sub-likelihoods18

so as to improve the resulting test power. Differently from the existing approaches, we impose a sparsity requirement on our19

alternative hypothesis reflecting the notion that only a certain portion of data subsets fundamentally explains the difference20

between groups. While testing the null hypothesis of no difference between groups, our method makes efficient use of21

data by dropping noisy or redundant data subsets to the maximum extent. This procedure is implemented by a forward22

search algorithmwhich, similar to the well-establishedmethods in variable selection, progressively includes onemore sub-23

likelihood at each step until no significant improvement in terms of power is observed.24

The new approach proposed can be extended to general linear hypothesis testing (cf. Chapter 7 of Lehmann and Romano,25

2005)without fundamental difficulty, but will not be pursued in detail in this paper. The remainder of the paper is organized26

as follows. In Section 2, we describe the main framework for composite likelihood estimation and overview the existing27

Wald-type association tests. In Section 3,wedescribe the newFS-CLmethodology andpropose the forward search algorithm.28

In Section 4, we study the finite-sample properties of our method in terms of Type I error probability and power using29

simulated data. In Section 4.4, we apply our test to the case-control genotype data from the Australian Breast Cancer Family30

Study. In Section 5, we conclude the paper by providing some final remarks.31

2. Composite likelihood inference32

2.1. Sparse composite likelihood estimation33

Consider a random sample of n observations on a d-dimensional randomvector Y = (Y1, . . . , Yd)
T following a probability34

density function f (y; θ), with unknown parameter θ ∈ Θ ⊆ Rq and q = dim(Θ) ≥ 1. Let θ̂ (w) be the profiled maximum35

composite likelihood estimator (MCLE) of θ , obtained by maximizing the composite likelihood function36

ℓcl(θ; w) =


Ncl
k=1

wk

−1 Ncl
k=1

wkℓk(θ), (1)37

whereNcl is the total number of sub-likelihood objects being considered,w = (w1, . . . , wNcl)
T

∈ Ω = {0, 1}Ncl is a vector of38

binary weights referred to as composition rule, and ℓk(θ) ∝ log f (Sk; θ) is the sub-likelihood defined on the kth data subset39

Sk. The composite likelihood design is typically user-specified (Varin et al., 2011; Lindsay et al., 2011). For example, ℓk can40

be based on all marginal events (Sk = {yk}, k = 1, . . . , d), all pair-wise events (Sk = {yj, yl}, 1 ≤ j < l ≤ d), or conditional41

events (Sk = {yk|yj, j ≠ k}, k = 1, . . . , d).42

In our parsimonious composition framework, each sub-likelihood ℓk(θ) is allowed to be selected or not, depending on43

whetherwk takes the value of 1 or 0,which results in an efficient use of the data. The total number of selected sub-likelihoods,44

∥w∥ =
Ncl

k=1 wk, can bemuch smaller than the totalNcl ones available. This is in contrastwith the frequently used composite45

likelihood setting where all the Ncl sub-likelihoods are selected. Particularly, in the latter case w = wall = (1, . . . , 1)T , and46

no data noise reduction is attained.47

A complication related to notations in composite likelihood is that the parameter θ does not always have all its elements48

involved in each sub-likelihood ℓk(θ). To facilitate presentation in the sequel, we rewrite ℓk(θ) as ℓk(θk) by using θk to49

represent the parameter involved in ℓk(·). Thus the parameter θ is equivalently represented by (θ1, . . . , θNcl) in composite50

likelihood. This necessarily means (θ1, . . . , θNcl) may contain common elements or elements of known values. For example,51

if Y follows a d-variate normal distribution Y ∼ Nd(µ, σ 2I)withµ = (µ1, . . . , µd−1, 0)T and I being the identitymatrix, one52

may define sub-likelihoods using marginal normal distributions N1(µk, σ
2
k ), k = 1, . . . , d = Ncl and equate µd with 0 and53

all σ 2
k ’s with σ 2. In applying parsimonious likelihood composition a subset of (θ1, . . . , θNcl) indexed by the composition rule54
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