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a b s t r a c t

New nearest neighbor estimators of the nonparametric regression function and its
derivatives are developed. Asymptotic normality is obtained for the proposed estimators
over the interior points and the boundary region. Connections with other estimators such
as local polynomial smoothers are established. The proposed estimators are boundary
adaptive and extensions of the Stute estimators. Asymptotic minimax risk properties are
also established for the proposed estimators. Simulations are conducted to compare the
performance of the proposed estimators with others.
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1. Introduction 1

Given i.i.d. observations {Xi, Yi}
n
i=1 of (X, Y ), consider estimation of the regression function m(x) = E[Y |X = x] for 2

x ∈ Rd. There are several popular methods for estimating the function m(x): kernel smoothing (Nadaraya, 1964; Watson, 3

1964; Gasser andMüller, 1979;Müller, 1988;Wand and Jones, 1995), nearest neighbor averaging (Stone, 1977; Stute, 1984), 4

wavelet thresholding (Donoho and Johnstone, 1994; Donoho et al., 1995; Ogden, 1997; Antoniadis, 1999; Vidakovic, 1999), 5

spline smoothing (Wahba, 1977; Eubank, 1988; Nychka, 1995; Green and Silverman, 1994; Stone et al., 1997), and local 6

polynomial methods (Stone, 1977; Cleveland, 1979; Fan, 1993; Fan and Gijbels, 1996). Among these methods, the local 7

polynomial smoother is known for its automatic boundary adaptation and high asymptotic efficiency (for an overview see 8

e.g. Fan and Gijbels, 1996; Fan and Yao, 2003). 9

In this paper we consider a minimum empirical distance plug-in (medpi) approach for estimating a surface θ : Rd
→ 10

R which first finds the coefficient vector β(x) that minimizes a distance, Dx(θ(·), θ(· − x; β)), between θ(z) and an 11

approximating function θ(z−x; β) for z in a neighborhood of a given point x ∈ Rd, next expresses this β(x) as a functional 12

β(x;Q ) of a surface Q : Rq
→ R that admits an empirical estimate Q̂ (·), and then uses the empirical plug-in (epi) 13

approach with β̂(x) = β(x; Q̂ ) and θ̂ (x) = θ(0; β̂(x)). This approach is appealing for density estimation, univariate and 14

multivariate; for hazard estimation; and for nonparametric regression (Jiang and Doksum, 2003a,b); Section 11.6 of Bickel Q3 15

and Doksum (2015). In particular, the medpi method includes the local polynomial smoother as a specific example and 16

deals with density estimation, hazard rate estimation and regression estimation in a united framework with Q being the 17
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population distribution. Furthermore, the medpi approach only needs a (generalized) empirical estimator for the surface,1

which facilitates the estimation problem with censored and truncated observations because of the wide availability of the2

empirical estimators. The medpi method provides estimators with certain advantages for x in boundary regions.3

In this presentation, we will develop a nearest neighbor estimation approach to regression, based on the medpi and the4

following symmetrized nearest neighbor estimators studied in Yang (1981) and Stute (1984):5

m̂n(x) = n−1
n

i=1

Kh(Fn(Xi) − Fn(x))Yi, (1.1)6

where Kh(·) = h−1K( ·

h ) with kernel function K(·) and bandwidth h controlling the amount of data in smoothing.7

As noted in page 918 in Stute (1984), estimator m̂n(x) depends on X1, . . . , Xn through their ranks and is a (smoothed) kn8

nearest neighbor type estimator, but neighbors are defined in terms of distance based on the empirical distribution function9

of the {Xi}
n
i=1. This may be seen when K(·) = 1[−0.5,0.5](·). Let X(1), . . . , X(n) be the order statistics of X1, . . . , Xn, and Y(i) be10

the Y -value corresponding to X(i). Then mn(x) is the average of Y(i)’s for which, X(i) is in the neighborhood of x, denoted by11

Nx = {i : |Fn(X(i))− Fn(x)| ≤ h/2}. Since Fn(·) is a step function with jump size 1/n at each Xi, there exist about kn = nh Xi’s12

in Nx.13

The nearest neighbor estimator m̂n(x) has several advantages: one is that there is no need to estimate the density f (x)14

and to use a multivariate kernel with different bandwidths for each components of covariates, which is quite favorable15

for multivariate design; another is that this approach allows one to model the regression function even if the covariates16

have no probability density (Stute, 1984). However, Stute’s estimation suffers from boundary effects. While keeping17

the advantages above, our estimator naturally extends m̂n and overcomes this disadvantage. The proposed estimator18

employing local linear approximation is a best linear smoother in the sense that it achieves minimax risk. It can be used19

to construct semi-parametrically efficient estimates in partial linear models, e.g. see Examples 9.1, 13, 9.2.4 and 9.3.6 in20

Vol II of Bickel and Doksum (2015). Our results, together with those in Jiang and Doksum (2003a,b) show convincingly the21

generality and wide applicability of themedpimethod. This will encourage other researchers to apply themedpimethod to22

related problems. In particular, one can employ it in sparse dimensional additive models by combining the nonparametric23

independent screening (Fan et al., 2011) and the measurement error model selection (Stefanski et al., 2014; Wu and24

Stefanski, 2015).25

The reminder of the paper is organized as follows. In Section 2 we build the connection between the medpi and the26

local polynomial smoother and develop the nearest neighbor estimator. Section 3 focuses on the asymptotic properties of27

the proposed estimators, including the asymptotic normality and minimaxity. Section 4 reports some simulation results.28

Technical proofs are provided in the Appendix.29

2. Minimum empirical distance plug-in estimation30

We take the following strategy to construct our medpi version of the nearest neighbor estimator. First we formulate the31

medpi estimator by minimizing a discrepancy between a function θ(·) and its local approximation θ(· − x; β(x)) under32

general designs. Next we reduce it to the local polynomial smoother. Then we restrict the medpi to the uniform design.33

After that we substitute the uniform distribution by the distribution function of multivariate predictors. Finally, we solve34

the minimization problem and derive the medpi based nearest neighbor estimator. Now let us illustrate the detail of this35

construction.36

As illustrated in Introduction, for a given x ∈ Rd, we use θ(z−x; β(x)) to best approximate θ(z) for z in a neighborhood37

of x, where θ(z − x; β(x)) is known up to unknown β , in the sense that38

β(x) = argminDx(θ(·), θ(· − x; β)), (2.2)39

whereDx(·, ·) is a distance or discrepancy, for example,Dx(θ(·), θ(·−x; β)) =

[θ(z)−θ(z−x; β)]2Kh(z−x)w(z)dz. Here,40

w(·) is a nonnegative weight function which is continuous and nonzero at x. The above β depends on the unknown θ(·),41

however, inmany interesting cases it is possible to express this dependence as a functionalβ(x;Q ) of a surfaceQ : Rq
→ R42

that admits an empirical estimate Q̂ (·) from a given dataset. This is true when θ(·) is a model parameter represented as a43

functional θ(·;Q )withQ being the population distribution or cumulative hazard function. Then themedpi estimator of θ(x)44

is θ̂ (x) = θ(0; β̂(x)).45

Let F and G denote the distribution functions of X and (X, Y ), respectively. In minimization problem (2.2) with d = 1, if46

we take θ(·) = m(·), θ(· − x; β) =
p

j=0 βj(· − x)j, which means a local pth order polynomial used in approximation, and47

Dx(θ(·), θ(· − x; β)) =

[θ(z) − θ(z − x; β)]2Kh(z − x)dF(z), then β minimizes the distance48

 m(u) −

p
j=0

βj(u − x)j

2

Kh(u − x) dF(u). (2.3)49
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