
Computational Statistics and Data Analysis 110 (2017) 87–102

Contents lists available at ScienceDirect

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda

Mixture models for mixed-type data through a composite
likelihood approach
Monia Ranalli ∗, Roberto Rocci
Department of Statistics, The Pennsylvania State University, USA
Department of Economics and Finance, Tor Vergata University, Rome, Italy

a r t i c l e i n f o

Article history:
Received 5 February 2016
Received in revised form 17 November
2016
Accepted 31 December 2016
Available online 6 January 2017

Keywords:
Mixture models
Mixed-type data
Composite likelihood
EM algorithm

a b s t r a c t

A mixture model is considered to classify continuous and/or ordinal variables. Under this
model, both the continuous and the ordinal variables are assumed to follow aheteroscedas-
tic Gaussian mixture model, where, as regards the ordinal variables, it is only partially
observed. More specifically, the ordinal variables are assumed to be a discretization of
some mixture variables. From a computational point of view, this creates some prob-
lems for the maximum likelihood estimation of model parameters. Indeed, the likelihood
function involves multidimensional integrals, whose evaluation is computationally de-
manding as the number of ordinal variables increases. The proposal is to replace this
cumbersome likelihood with a surrogate objective function that is easier to maximize.
A composite approach is used, in particular the original joint distribution is replaced by
the product of three blocks: the marginal distribution of continuous variables, all bivari-
ate marginal distributions of ordinal variables and the marginal distributions given by all
continuous variables and only one ordinal variable. This leads to a surrogate function that
is the sum of the log contributions for each block. The estimation of model parameters is
carried out maximizing the surrogate function within an EM-like algorithm. The effective-
ness of the proposal is investigated through a simulation study and two applications to real
data.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, modern complex data structure raises new challenges in likelihood-based inference methods, where com-
plex means that the dependence between observed variables is difficult to model. The situation is even more complicated
when mixed-type data (continuous and ordinal variables) are present. Furthermore, in many applications, the standard as-
sumption of homogeneity is not reliable. Indeed, in several fields, such as e.g. in economics, social sciences or genomics, the
population is composed of a finite number of subpopulations. In other words, there exists a cluster structure underlying the
data. The aim of cluster analysis is discovering groups within a set of objects, such that homogeneous clusters differ con-
siderably from each other. The literature on clustering has been mainly developed for continuous data. Clustering ordinal
variables is a lively field of research, but the amount of work done is still relatively small. The challenge to model ordinal
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data ismainly due to the lack ofmetric properties. For this reason, it is still common to analyze ordinal data following a naive
approachwhereby their nature is ignored. Ranks are treated as interval-scaled, and thus clustering techniques developed for
continuous data are applied. Finite mixture of Gaussians (see e.g. Lindsay, 1995 and McLachlan and Peel, 2000) represents
the most used and well-knownmodel-based clustering for continuous data. They have been intensively used in many fields
and with different purposes (e.g. unsupervised, semi-supervised and supervised classification). Their success is mainly due
to their simplicity to be fitted and interpreted. According to a clustering point of view, they provide a coherent strategy
for classifying data accounting for uncertainties through probabilities. On the other hand, the most common model-based
clustering for categorical data is latent class analysis (Goodman, 1974) and some constrained versions that have been pro-
vided for ordinal data (see e.g. DeSantis et al., 2008). These models are finite mixtures arising from the local independence
assumption. They consider the cluster membership as a nominal latent factor and assume that themanifest variables are in-
dependent given that factor. Of course, this model is inadequate when there are dependences among the manifest variables
within the clusters. Such inadequacy can be solved following the Item Response Theory (IRT) approach. The ordinal vari-
ables are assumed to be independent given a set of latent continuous variables. The latter having a clustering structure, for
example, they can be distributed as a finite mixture of Gaussians (FMG) (Cagnone and Viroli, 2012; McParland et al., 2014).
Another way to overcome thewithin-independence limitation is to consider a FMG that allows dependences within clusters
to be modeled by means of the covariance matrices. Following the Underlying Response Variable (URV) approach used in
latent variablesmodels, the FMG can be adapted to ordinal data by assuming that the observed variables are a categorization
of underlying non-observable continuous variables distributed as a FMG (see for example Lubke and Neale, 2008; Ranalli
and Rocci, 2016a; Ranalli and Rocci, 2015). However, even if it is possible to cluster via a model based approach continuous
or ordinal variables separately, combining both into a common framework may raise some issues. Assuming that the data
arises from a finitemixturemodel, themain problem is represented by the choice of the parametric joint distribution for the
continuous and ordinal variables. From a practical point of view, it may be easy treating variables as they were all contin-
uous; this means ignoring the nature of ordinal variables and considering the ranks as continuous variables. However, this
naive approach, although it could give some useful clues about the cluster structure, it could lead to some biased inferential
conclusions.

Following theURV approach, Everitt (1988) and Everitt andMerette (1990) proposed amodel according towhich both the
continuous and the categorical ordinal variables follow a homoscedastic Gaussian mixture model. However, as regards the
ordinal variables, the mixture variables are only partially observed through their ordinal counterparts. In other words, the
ordinal variables are modeled following the URV approach. This satisfies the two main requirements: dealing with ordinal
data properly andmodeling dependences between ordinal and continuous variables. It is interesting to note that this model
can be rewritten in terms of copulas (Marbac et al., 2014). The main drawback of this model is that, in practice, it cannot
be estimated through a full maximum likelihood approach, due to the presence of multidimensional integrals making the
estimation time consuming. Typically, the full informationmaximum likelihood becomes computationally demanding even
with a number of ordinal variables very low and infeasible when this number is greater than 5. Here, the proposal is to
use a mixture model to classify continuous and ordinal variables. The model considered is a modified version of Everitt
(1988) and can be seen as an extension to mixed-type data of the mixture model for ordinal data proposed by Ranalli and
Rocci (2016a). The observed ordinal variables are considered as a categorization of an underlying mixture of normals. This
means that the whole mixture is not fully observed. As in de Leon and Carriègre (2007), the joint distribution within each
component can be decomposed in two factors: the first corresponds to the observed normal distribution for the continuous
variables, while the second one to the distribution of the ordinal variables given the continuous ones. The latter involves
multidimensional integrals, whose evaluation is computationally demanding as the number of ordinal variables increases.
To overcome this issue, we propose to replace this cumbersome likelihood with a surrogate objective function, easier to
maximize, that is the product of marginal likelihoods. In this way, regardless the number of variables, the multidimensional
integrals are reduced to be univariate or at most bivariate integrals. Our proposals is based on the existing results within
a mixture model framework (Ranalli and Rocci, 2016a, 2015). It is a composite likelihood method (Lindsay, 1988; Varin
et al., 2011) where surrogate functions are defined as the product of marginal or conditional events. As we show, it is
a workable compromise between statistical and computational efficiency. Indeed, the composite likelihood methods are
flexible ways to create consistent estimators, which inherit the main desirable properties of the maximum likelihood
estimators: asymptotically unbiased and normally distributed with the variance given by the inverse of the Godambe
Information (Lindsay, 1988; Varin et al., 2011).Moreover, they have some varying degrees of robustness (Xu and Reid, 2011),
they are fully efficient and identical to the fullmaximum likelihood estimators in exponential families under a certain closure
property (Mardia et al., 2009). In general efficiency is not easy to achieve and it is strictly linked to the design issue. Under
our proposal, the composite approach consists of replacing the joint likelihoodwith the product of three blocks ofmarginals:
the marginal distribution of continuous variables, all bivariate marginal distributions of ordinal variables and the marginal
distributions given by all continuous variables and only one ordinal variable. This leads to a surrogate function that is the
sum of the log contributions for each block. The estimation of model parameters is carried out within an EM-like algorithm.
The remainder of the paper is organized as follows. Section 2 introduces the clustering model, describes the estimation
procedure and deals with some minor issues (classification and model selection). Section 3 sketches the necessary, but not
sufficient, condition to identify the model. Some related models are described in Section 4. A simulation study is presented
in Section 5. Two applications to real data have been conducted in Section 6. Finally, concluding remarks are pointed out in
Section 7.
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