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h i g h l i g h t s

• Dimension reduction and variable selection are integrated in an objective function.
• Existence of the solution to the constrained objective function is established.
• Solution is via optimizing predictive ability vis-à-vis selection of predictors.
• Smaller prediction errors are observed even under non-high dimensional settings.
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a b s t r a c t

High dimensional predictors in regression analysis are often associated with multi-
collinearity along with other estimation problems. These problems can be mitigated
through a constrained optimizationmethod that simultaneously induces dimension reduc-
tion and variable selection that also maintains a high level of predictive ability of the fitted
model. Simulation studies show that the methodmay outperform sparse principal compo-
nent regression, least absolute shrinkage and selection operator, and elastic net procedures
in terms of predictive ability and optimal selection of inputs. Furthermore, the method
yields reduced models with smaller prediction errors than the estimated full models from
the principal component regression or the principal covariance regression.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction 1

Large volumes of data that may come from different sources are available from genetic sequences, multi-point and 2

multi-feature image data, transactional details, business processes, and even marketing campaigns. Analyses of these data 3

are crucial in a wide spectrum of applications such as in genomics, bioinformatics, agriculture, astronomy, and business 4

intelligence. The data are processed and summarized into useful information for strategic decision-making. However, the 5

literature has beendominated by the assumption of smaller number of features (p) relative to the number of observations (n). 6

Asymptotic theories, therefore,may not be helpful as it assumes n approaching∞while p is fixed. These lead to difficulties in 7

dealingwith data having p ≫ n, i.e., datawith a relatively larger number of features compared to thenumber of observations. 8

In regression analysis, multicollinearity may result in ill-conditioning and/or near-singularity of the associated design 9

matrix, resulting in unstable estimates (inflated standard errors). Similarly, classical regression framework assumes p ≤ n; 10
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otherwise, the design matrix is singular and therefore the parameters in the regression model are not uniquely estimable.1

Non-orthogonality of the predictors in a linear model causes the ill-conditioning problem, and as a solution, those2

duplicating variables are dropped but at the expense of bias for the regression coefficients of the remaining variables. In3

time series data of indicators, e.g., those benefiting frommacroeconomic policies, natural drifting of the variables is expected4

resulting in similar ill-conditioning problem. For non-stationary time series, the ill-conditioning problem can be mitigated5

through the use of growth rate (differencing) of the indicators instead of the original levels. Differencing, however, results6

in an alteration of the dependence structure since it generally filters low frequencies and preserves high frequencies in the7

data, thereby eliminating the effect of some important random shocks and possibly contaminating the relationship being8

investigated.9

An alternative approach in modeling high dimensional data for purposes of dimension reduction and variable selection10

under a regression modeling framework is presented. The method provides a strategy for modeling high-order covariates11

and outputs in a regression-type problem, i.e., modeling multicollinear data (cross-sectional data) or nonstationary data12

(time series and/or spatio-temporal data). It further identifies key predictors among a large number of predictors (or13

equivalently, for a small number of observations).14

2. Modeling high dimensional data15

In high dimensional data where the number of predictors p is very large compared to the number of observations n,16

the best ‘‘representation’’ of the data is usually difficult to achieve. Simultaneous testing of the p predictors becomes more17

and more inefficient as p gets larger. Variable selection (and equivalently, observation clustering) becomes more difficult18

as p (or n) gets larger. In regression modeling with very large p, the identification of the most important set of predictors19

becomes challenging since presence of toomanypredictorsmasks the importance of some, thereby leading tomore potential20

problems of model misspecification. The usefulness and interpretability of the identified ‘‘important’’ set of predictors may21

be problematic, or at least, doubtful.22

Given y
nx1

, a vector of observations from a dependent variable and Xn×p =

x1, . . . , xn

T , a matrix of observations on23

p variables for the n subjects. The hypothesized model takes the form y = Xβ + ε, with β =

β1, β2, . . . , βp

T and24

ε = (ε1, ε2, . . . , εn)
T . For i = 1, 2, . . . , n, assume that the error terms εi are independent and each follows a Gaussian25

distribution with mean zero and constant variance σ 2 > 0. The ordinary least squares (OLS) regression estimator of β is26

β̂ =

XTX

−1 XTy is optimal (Gauss–Markov Theorem) provided that n > p.27

When p ≫ n, the estimator β̂ is not unique since high dimensionality of the data matrix leads to the singularity of28

the Gram matrix XTX (Chatterjee and Hadi, 2006; Draper and Smith, 1998). Similarly, the estimator β̂ is unstable, i.e., the29

estimators for β may not be reliable since the standard errors are also based on the Grammatrix (Draper and Smith, 1998).30

Thus, tests and confidence bounds that use the standard errors and the estimated variance–covariance matrix of the error31

terms (which is also based on the Gram matrix) are invalid. Even when p < n but there are high correlations among the32

independent variables, tests and confidence bounds based on the ill-conditioned Gram matrix XTX are also invalid (Draper33

and Smith, 1998). In general, the OLS estimator β̂ are no longer optimal in the presence of multicollinearity and/or when34

p ≫ n.35

Solutions to multicollinearity and singularity range from transformations, to variable selection or stepwise regression36

methods, to modified estimation procedures; and issues were raised in using such solutions. However, Garson (2012)37

suggests that power and nonlinear transformations may cause over-fitting or even increase the level of multicollinearity.38

Garson (2012) also noted that stepwise regression methods are even more affected by multicollinearity than regular39

methods since additional information is difficult to attain with the deletion of ‘‘unimportant’’ variables, and as such, the40

process of deletion sometimes introduces subjectivity.41

The use of principal components in regression (principal component regression or PCR), is proposed as a possible solution42

to the problem of multicollinearity (Jolliffe, 1982). PCR, as noted by Kosfeld and Lauridsen (2008), may work for cases with43

highly multicollinear independent variables since PCR reduces the variability of the regression coefficients estimates but at44

the expense of its bias. Fewer components may be used in modeling, but with discrepancy in the amount of information45

between the raw individual predictors and the PCs. Foucart (2000) also notes that deleting components that are not46

significant may introduce bias to the least squares estimates of the remaining coefficients and may lead to biased residual47

variance estimates. Foucart (2000) proposed to discard principal components based on partial correlation coefficients aside48

from tests of significance (of the components in regression) and magnitude of eigenvalues (of the independent variables),49

while Hwang and Nettleton (2003) provide an alternative approach of selecting a subset of components in PCR that50

minimizes MSE of the beta-coefficients.51

On the other hand, De Jong and Kiers (1992) introduce the principal covariates regression (PCovR) which simultaneously52

minimizes the least squares regression residuals and the transformation residuals on the independent variables. PCovR is53

viewed as a one-step approach to PCR. Similarly, George and Oman (1996) proposed a multiple-shrinkage estimator on the54

regression coefficients to overcome the influence of multicollinearity on PCR. In the multivariate regression framework,55



Download English Version:

https://daneshyari.com/en/article/4949324

Download Persian Version:

https://daneshyari.com/article/4949324

Daneshyari.com

https://daneshyari.com/en/article/4949324
https://daneshyari.com/article/4949324
https://daneshyari.com

