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a b s t r a c t

The variable selection problem is discussed in the context of high-dimensional failure time
data arising from the accelerated failure time model. A data augmentation approach is
employed in order to deal with censored survival times and to facilitate prior-posterior
conjugacy. To identify a set of grouped relevant covariates, a shrinkage prior distribution
is specified for the regression coefficients mimicking the effect of group lasso penalty. It
is noted that unlike the corresponding frequentist method, a Bayesian penalized regres-
sion approach cannot shrink the estimates of coefficients to exact zeros in general. Toward
resolving the issue, a two-stage thresholding method that exploits the scaled neighbor-
hood criterion and the Bayesian information criterion is devised. Simulation studies are
performed to assess the robustness and performance of the proposed method in terms of
variable selection accuracy and predictive power. The method is successfully applied to a
set of microarray data on the individuals diagnosed with diffuse large B-cell lymphoma. In
addition, an R package called psbcGroup, which can be downloaded freely from CRAN, is
developed for the implementation of the methods.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction 1

Q3

Survival analysis with high-dimensional covariates has received substantial attention in the last few years. With the 2

increasing ability for obtaining gene expression data for patients, genetic signatures have started to play a more important 3

role than pathological outcomes in the study of the molecular portrait of a disease and the prediction of potential survival 4

time (Sotiriou and Piccart, 2007). A comprehensivemolecular and genetic profiling of the disease has a huge potential toward 5

developing personalized medicine and targeted therapies. 6

In survival analysis, the most commonly used regression model is perhaps the proportional hazards (PH) model (Cox, 7

1972). On the other hand, it is well-known that the PHmodel has some restrictions andmay not fit the data well sometimes. 8

Also in some contexts, the proportionality structure assumed by themodel makes it hard to interpret regression coefficients 9

(Wei, 1992; Hernán, 2010; Uno et al., 2015). To address these, many othermodels have been proposed and among them, one 10

is the accelerated failure time (AFT)model (Prentice, 1978; Buckley and James, 1979; Koul et al., 1981). One important feature 11

of the AFT model is that it provides a more direct physical interpretation on regression parameters (Collett, 2003) since it 12

has a structure similar to the ordinary linear regression model and directly links the failure time of interest to covariates. 13

∗ Correspondence to: 245 First St, Cambridge, MA 02142, USA. Fax: +1 617 262 4021.
E-mail address: klee@forsyth.org (K.H. Lee).

http://dx.doi.org/10.1016/j.csda.2017.02.014
0167-9473/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.csda.2017.02.014
http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
mailto:klee@forsyth.org
http://dx.doi.org/10.1016/j.csda.2017.02.014


2 K.H. Lee et al. / Computational Statistics and Data Analysis xx (xxxx) xxx–xxx

Variable selection in the high-dimensional setting has recently received a great deal of attention and many methods1

have been developed for it. Among them, one of the early and commonly used approach is the lasso penalized approach2

(Tibshirani, 1996) and by following it, other authors proposed a few other penalty functions including elastic-net (Zou and3

Hastie, 2005), grouped lasso (Yuan and Lin, 2006), and fused lasso (Tibshirani et al., 2005). Note that most of these and other4

existing methods were developed for either continuous response or binary response data, and also all of the penalization5

methodsmentioned above are not based on any probabilistic framework. In addition, there are several penalizationmethods6

developed in the Bayesian paradigm (Park and Casella, 2008; Bornn et al., 2010; Kyung et al., 2010), which has the advantage7

that allows one to incorporate substantive prior information in the analysis. Also a Bayesian framework enables one to obtain8

the posterior predictive distribution and thus to readily quantify the uncertainty related to the prediction. Nevertheless,9

there only exists limited literature on Bayesian variable selection for high-dimensional data with the response variable of10

interest being a failure time or suffering right-censoring.11

A few methods have been proposed for variable selection based on right-censored failure time data based on the Cox12

PH model (Tibshirani, 1997; Gui and Li, 2005; Bøvelstad et al., 2007; Tibshirani, 2009) and a nice comparative study13

for the methods can be found in Bøvelstad et al. (2007). Huang et al. (2006) and Engler and Li (2009) discussed some14

penalized approaches for the failure time data arising from the AFT model with a large number of predictors. Also in15

the Bayesian paradigm, Lee et al. (2011, 2015) developed variable selection methods for the PH model by using various16

shrinkage priors. Note that another traditional way to impose sparsity in the Bayesian paradigm is to specify spike and slab17

(a mixture of Normal and point mass distribution at zero) priors on regression coefficients. This is otherwise known as the18

stochastic search variable selection technique, studied extensively in George and McCulloch (1993, 1997) and applied in19

many applications (Brown et al., 1998; Sha et al., 2006; Hernández-Lobato et al., 2013; Narisetty and He, 2014; Lee et al., in20

press). Newcombe et al. (2014) proposed a Bayesian variable selection method based on a reversible jump implementation21

of the Weibull model. Most recently, Zhang et al. (in press) developed a variable selection approach using lasso under AFT22

model, which studied the grouping structure among errors.23

In the following, wewill consider the analysis of right-censored failure time data arising from the AFTmodel and present24

a Bayesian method with the use of a shrinkage prior and the focus on the identification of a subset of important covariates25

related to the failure time of interest in the high dimensional situation (n ≪ p). In the method, to induce the sparsity of the26

model and group variable selection, we will utilize the scale mixture of normal and gamma distributions for regression co-27

efficients that mimics the role of group lasso penalty and a data augmentation technique for the imputation of the censored28

failure times (Tanner andWong, 1987; Komárek and Lesaffre, 2007). The prior specification along with the data augmenta-29

tion approach can facilitate the prior-posterior conjugacy in the proposed Bayesian framework, and thus we can estimate30

the posterior distributions of parameters via typical Gibbs sampling without employing any complex Monte Carlo methods.31

Also the tuning parameter that controls the sparsity will be automatically adjusted and updated by specifying a hyperprior32

distribution. Note that although useful for shrinking regression parameters corresponding to irrelevant covariates toward33

zero, the Bayesian lasso does not have the ability to produce exact zero estimates like frequentist counterpart. In order to34

perform the variable selection, we will develop a two-stage thresholding method that accommodates both the posterior35

distribution of regression parameters and a goodness-of-fit.36

The remainder of the paper is organized as follows. We will begin in Section 2 with introducing a motiving example,37

the diffuse large B-cell lymphoma (DLBCL) microarray study. In particular, some preliminary analysis results are provided38

and suggest that the PH model may not fit the data appropriately. Section 3 will present the proposed Bayesian inference39

procedure and Section 4 will discuss the variable selection problem and describe a thresholding method. In Section 5,40

simulation studies are conducted to assess the performance of the proposed methodology, especially the robustness, and41

the results suggest that the approach works well in practice. Section 6 applies the methodology to the DLBCL microarray42

study and some discussion and future research directions are given in Section 7.43

2. Diffuse large B-cell lymphoma microarray study44

In this paper,we consider data collected fromaDLBCLmicroarray study. Sincemolecular features of the tumors influences45

themortality of patientswithDLBCL after chemotherapy, Rosenwald et al. (2002) developed amolecular predictor of survival46

by using the gene-expression profiles of the lymphomas. In the study, a Lymphochip cDNAmicroarraywith p = 7399 probes47

were used tomonitor n = 240 patients. The survival times for 102 subjects were right-censored.We applied the 10 nearest-48

neighbors method for missing gene expressions in DLBCL data set.49

Rosenwald et al. (2002) identified individual genes whose expression are correlated with patients’ survival by using a50

Cox PH model. The PH model assumes constant hazard ratios over time. However, when the proportionality assumption51

is violated, the application of the Cox PH model has the potential to bias the results that may lead to the loss of power52

in estimation and inference of the prognostic factors on mortality (Therneau et al., 1990). Therefore, we check the PH53

assumption by adopting the Weibull heteroscedastic hazards regression model (Hsieh, 2001; Nikulin et al., 2006). This54

approach permits the shape parameter of theWeibull baseline hazard function to dependupon covariate values. Let T denote55

survival time and x a p-dimensional covariate vector. Specifically, we consider the following heteroscedasticWeibull model:56

λ(ti; xi, zi) = ηκ0ez
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