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a b s t r a c t

We consider estimation and hypothesis test for partial linear measurement errors models
when the response variable and covariates in the linear part are measured with additive
distortion measurement errors, which are unknown functions of a commonly observable
confounding variable. We propose a transformation based profile least squares estimator
to estimate unknown parameter under unrestricted and restricted conditions. Asymptotic
properties for the estimators are established. To test a hypothesis on the parametric
components, a test statistic based on the normalized difference between the residual sums
of squares under the null and alternative hypotheses is proposed, andwe further show that
its limiting distribution is a standard chi-squared distribution. Lastly, we suggest a lack-of-
fit test of score type for checking the validity of partial linear models. The quadratic form
of the scaled test statistic is asymptotically chi-squared under the null hypothesis and a
non-centered one under local alternatives converging to the null hypothesis at parametric
rates. Simulation studies are conducted to demonstrate the performance of the proposed
procedure and a real example is analyzed for an illustration.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction 1

Various semiparametric regression models have been proposed to balance model interpretability and flexibility when a 2

full nonparametric model does not work, and have been widely studied and used to explore complicated relations between 3

the response variable and covariates of interest in data analysis. Some useful semi-parametric regression models include 4

partial linear models (Härdle et al., 2000; Heckman, 1986; Liu et al., 2011; Xu and Guo, 2013), partial linear single index 5

models (Carroll et al., 1997; Liang et al., 2010; Yu and Ruppert, 2002), and partial linear varying-coefficient models (Fan 6

and Huang, 2005; Kai et al., 2011; Zhou and Liang, 2009). In this article, we focus on the partial linear models (PLMs), which 7

are expressed as 8

Y = XTβ0 + g(Z) + ϵ. (1.1) 9

In model (1.1), Y is a scalar response variable, covariates (XT, ZT)T ∈ Rp
× R, β0 is an unknown vector in Rp, ϵ is the error 10

term with mean zero and finite variance, and g(·) is an unknown smooth function. 11

Measurement errors are common in many disciplines, such as medical research, health science and economics, due to 12

improper instrument calibration or many other reasons. When some variables have been measured with errors, estimation 13
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based on the standard assumption may cause large bias and leads to inconsistent estimates, meaning that the parameter1

estimates do not tend to the true values even in a large sample. For example, the effect of the measurement errors in a2

simple linear regression is an underestimate of the coefficient, known as the attenuation bias (Fuller, 1987). In non-linear3

models, the structure of the bias is more complicated (Carroll et al., 2006). The classical statistical estimation and inference4

for measurement errors models is challenging, and it requires particular care to eliminate such bias when estimating target5

parameters. Research on measurement errors models has been widely studied. In this paper, we consider the following6

additive distortion measurement errors models7

Ỹ = Y + φ(U), X̃ = X + ψ(U) U y (Y ,X, Z), (1.2)8

where the notation y indicates independence. Here, (X, Y ) are unobserved, Ỹ and X̃ are observed distorted variables, Z9

is also observed without distortion, U is an observed continuous scalar confounding variable, ψ(U) is a p-dimensional10

vector
(
ψ1(U), . . . , ψp(U)

)T, where φ(·) and ψr (·) denote the unknown continuous distortion functions. The confounding11

variable U , for example, it can be the body mass index (BMI), height or weight in health or medical studies, usually has12

some kind of additive or multiplicative effects on the primary variables of interest. The simultaneous dependence of the13

original variables on the same confounding variable may result in any artificial relations which do not exist between the14

unobserved true variables (Şentürk andMüller, 2005). The additive distortionmeasurement errorsmodel (1.2) is introduced15

by Şentürk and Müller (2005), but they did not make an intensive study of the estimation and statistical inference for16

model (1.2). Şentürk andMüller (2005) focused on anothermultiplicative distortionmeasurement errors model Ỹ = φ(U)Y ,17

X̃r = ψr (U)Xr , r = 1, . . . , p under the identifiability condition E[φ(U)] = E[ψr (U)] = 1. Recently, a number of authors have18

studied the multiplicative distortion measurement errors models in various parametric or semi-parametric setting. See for19

example, Şentürk andMüller (2006, 2009) considered the linear regressionmodels and generalized linear models. Cui et al.20

(2009) studied the nonlinear regressionmodels. Li et al. (2010) considered the PLMswhen X is distortedwithmultiplicative21

distortion measurement errors. Delaigle et al. (2016) obtained a fundamental work of nonparametric estimation of a22

regression curvewhen the data are observedwithmultiplicative distortion. Toward this end, there is little systematic studies23

on the additive distortion measurement errors models, Nguyen and Şentürk (2007) proposed some graphical techniques24

for assessing departures from or violations of assumptions regarding the type and form of the additive or multiplicative25

distortion. For the estimation and hypothesis test problems, there are no studies for the PLMs with the additive distortion26

measurement errors.27

In this article, we investigate the estimation and hypothesis test for PLMswhen distorted variables are available. Our first28

goal is to estimate β0 and g(z) consistently. We transform the PLMs into partial linear additivemodels by using the observed29

data
{
Ỹi, X̃ i, Zi,Ui

}n
i=1, and thenwepropose a transformation based profile least squares estimator ofβ0. An interesting result30

is that the transformation based profile least squares estimator of β0 is efficient, i.e., the asymptotic variance of the estimator31

is the same as the classical asymptotic variance obtained in Härdle et al. (2000) when data have no additive distortion32

effects (i.e., φ(·) ≡ 0, ψ(·) ≡ 0). In other words, the transformation estimation procedure eliminates the effect caused by33

the additive distorting measurement errors φ(U) and ψ(U). Moreover, we also consider the problem of testing whether34

β0 satisfies some linear restriction conditions or not. A restricted transformation based profile least squares estimator is35

proposed by using Lagrangemultipliers under the null hypothesis. Finally, a test statistic based on the normalized difference36

between the residual sums of squares under the null and alternative hypotheses is proposed. Under the null hypothesis,37

the limiting distribution of the test statistic is shown to be a standard chi-squared distribution. Lastly, we aim to develop a38

lack-of-fit test for checking the adequacy of PLMs in the context of additive distortionmeasurement errors.We suggest lack-39

of-fit tests of score type statistic, which is shown to be asymptotically a centered normal distribution under null hypothesis.40

Another advantage for this test statistic is that it can detect local alternatives converging to null hypothesis at the rate n−1/2.41

After estimating the asymptotic variance of the test statistic, the quadratic form of the scaled test statistic is asymptotically42

chi-squared under the null hypothesis and a non-centered one under local alternatives converging to the null hypothesis at43

parametric rates. We conduct Monte Carlo simulation experiments to examine the performance of the proposed estimation44

and test procedures. Our simulation results show that the proposed estimators and test statistics perform well both in45

estimation and hypothesis testing.46

The paper is organized as follows. In Section 2,wepropose the estimation procedure andhypothesis test for the parameter47

β0, introduce the estimator of g(z) and present their asymptotic results. In Section 3,we develop a lack-of-fit test for checking48

the adequacy of PLMs, associated with the theoretical results of test statistic. In Section 4, we report the results of simulation49

studies and present the results of our statistical analysis of a real data. Technical proofs of theorems are provided in the50

supplementary materials (see Appendix A).51

2. Methodology52

2.1. Transformation based estimators for β0 and g(z)53

As the variables {Yi,X i}
n
i=1 are unobservable and measured with errors, we transform the model (1.1) with the observed54

sample {̃Yi, X̃ i,Ui, Zi}ni=1 into the following model:55

Ỹ = X̃T
β0 + g(Z) + φ(U) − ψT(U)β0 + ϵ,56

def
= α0 + X̃T

β0 + g1(Z) + g2(U) + ϵ, (2.1)57
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