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a b s t r a c t

It is well known that the composite quantile regression is a very useful tool for regression
analysis. In longitudinal studies, it requires a correct specification of the covariance
structure to obtain efficient estimation of the regression coefficients. However, it is a
challenging task to specify the correlation matrix in composite quantile regression with
longitudinal data. In this paper, we develop a new regression model to parameterize
covariance structures by utilizing the modified Cholesky decomposition. Then, based on
the estimated covariance matrix, efficient composite quantile estimating functions are
constructed to produce more efficient estimates. Since the proposed estimating functions
are discrete and non-convex, we apply the induced smoothing approach to achieve fast and
accurate estimation of the regression coefficients. Furthermore, we derive the asymptotic
distributions of the parameter estimations both in mean and covariance models. Finally,
simulations and a real data analysis have demonstrated the robustness and efficiency of
the proposed approach.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction 1

Longitudinal data arise commonly in many fields, such as biological and medical research, sociology and other fields. A 2

significant characteristic of this data is that observations collected from the same subject at different times are correlated. 3

Thus, it is a hot topic that how to make effectively use of the correlation to obtain efficient estimation of the regression 4

coefficients. The well-known generalized estimating equation (GEE) is one of the most popular methods, which is proposed 5

by Liang and Zeger (1986). Xie and Yang (2003) studied the asymptotic results of the GEEwhen either the number of sample 6

size or cluster size goes to infinity. Balan and Schiopu-Kratina (2005) developed a theory of statistical inference of the 7

GEE, which includes the weak consistency and asymptotic normality. Wang and Qu (2009) developed a novel Bayesian 8

information criterion type model selection procedure by combining the GEE and quadratic inference function. Ueki (2009) 9

proposed smooth-threshold estimating equations to select significance variables for longitudinal data. Wang et al. (2012) 10

proposed new variable selection procedure for longitudinal data by combining the GEE with penalty functions. Xu et al. 11

(2014) proposed a novel GEE-based screening procedure for longitudinal data. Other related methods can refer to Qu et al. 12

(2000), Chaganty and Joe (2004), Li and Pan (2013) and so on. 13
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However, the GEE approach is very sensitive to outliers or heavy-tailed distributions. Quantile regression is a powerful1

alternative technique to analyze longitudinal data. Quantile regression not only can achieve robust estimators but also2

describe the entire conditional distribution of response variable. But it is a challenging work to estimate the correlation3

matrix in quantile regression with longitudinal data (Leng and Zhang, 2014; Fu et al., 2015). A naive approach is to estimate4

the regression coefficients by ignoring the correlations between repeatedmeasurements,which results in a loss of efficiency.5

So far, some authors havemade some contributions to improve estimation efficiency in quantile regressionwith longitudinal6

data. Under the assumption of exchangeable correlation structure, Fu and Wang (2012) combined the between and within7

subject estimating functions to incorporate the correlations between repeated measurements. Leng and Zhang (2014)8

applied the quadratic inference functions (Qu et al., 2000) to handle or incorporate the correlations and proposed more9

efficient unbiased estimating equations. Lu and Fan (2015) developed new estimating equations by utilizing the general10

stationary autocorrelation structure. Fu et al. (2015) proposed a method to estimate correlation parameters and chose the11

most appropriate working correlation matrix simultaneously based on the Gaussian pseudolikelihood approach. Fu and12

Wang (2016) constructed new unbiased estimating functions by combining the Gaussian copulas and empirical likelihood13

method (Owen, 2001). Other related literature includesMu andWei (2009),Wang and Zhu (2011) and Tang and Leng (2011).14

Althoughquantile regressionhasmany advantages, itmay result in an arbitrarily small relative efficiencywhen compared15

with the least-squares regression. Recently, Zou and Yuan (2008) proposed a new regression method which is called16

composite quantile regression (CQR). The CQR not only possesses all merits of quantile regression but also provides17

estimation efficiency gain over a single quantile regression. Thus, it becomes a popular approach and has been extended18

to many fields, such as semi-parametric models, censored data and missing data. Tang et al. (2015) proposed weighted CQR19

estimators to improve estimation efficiency by combining the empirical likelihood and the quadratic inference function. So20

far, the CQR estimations with longitudinal data are not well studied in the literature.21

Although the papers mentioned above had improved estimation efficiency when compared with the conventional22

quantile regression or composite quantile regression, they only focused on some specific correlation structures such as23

the AR(1), compound symmetry when estimating the correlation coefficient matrix. These approaches result in inefficient24

estimators when the true correlation structure is misspecified. Thus, it is still blank in the development of a general25

regression approach to model the covariance matrix in composite quantile regression with longitudinal data. Recently, the26

modified Cholesky decomposition has become a popular approach to parameterize the covariancematrix (Ye and Pan, 2006;27

Leng et al., 2010; Mao et al., 2011; Zhang and Leng, 2012; Yao and Li, 2013; Liu and Zhang, 2013; Liu and Li, 2015; Qin28

et al., 2016; Guo et al., 2016). The main merits of decomposition include the following aspects: (i) it guarantees the positive29

definiteness of estimated covariance matrix, (ii) the parameters of covariance matrix are related to well-founded statistical30

concepts. However, the literature mentioned above only focused on mean regression, and no one utilized it to research31

composite quantile regression. In this paper, we propose a new regression model to parameterize covariance structures in32

composite quantile regressionwith longitudinal data. Comparedwith existing quantilemethods, the proposed approach not33

only can take the within correlations into consideration but also permit more general forms of the covariance structures.34

Thus the newmethod avoids to specify the working correlation structure to improve estimation efficiency, which is flexible35

and highly efficient.36

The rest of this article is organized as follows. In Section 2, within the frame of independent working model assumption,37

we give detailed discussions on composite quantile regression. In Section 3, we utilize themodified Cholesky decomposition38

to decompose the covariance matrix as moving average coefficients and innovation variances. Then estimating equations39

are constructed to estimate the covariance parameters, and the corresponding theoretical properties are also established in40

this section. In Section 4, we develop efficient estimating equations for the regression coefficients based on the estimated41

covariance matrix. In Section 5, extensive simulation studies are carried out to investigate the performances of our method.42

In Section 6, the ophthalmology data set is used to illustrate the proposedmethod. In Section 7, we derive some conclusions43

and give some remarks. Finally, the proofs of the main results are provided in the Appendix.44

2. Independent working model based on composite quantile regression45

We consider the linear model46

yij = xTijβ + εij, i = 1, . . . , n, j = 1, . . . ,mi, (1)47

where yij is the jth measurement on the ith subject, xij is the p-vector covariates, β is p× 1 unknown regression coefficient48

vector, and εij is the random error. Note that εi = (εi1, . . . , εimi)
T are correlated in the same subject but independent49

across the subjects. For independent data, when the slopes β are invariant across quantiles, Zou and Yuan (2008) proposed50

composite quantile regression, and the relative efficiency with respect to least squares regression is bounded below, and51

can be significantly more efficient when the errors are heavy tailed. Assume that 0 < τ1 < τ2 < · · · < τK < 1. In particular,52

we use the equally spaced quantiles, i.e., τk = k
K+1 for k = 1, 2, . . . , K . Let ρτ (u) = u (τ − I (u < 0)) be the check function53

at τ ∈ (0, 1). Then, under an independent working model, we can estimate the regression coefficients β by the standard54

composite quantile regression55 
b̂1, . . . , b̂K , β̂
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