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h i g h l i g h t s

• Locally optimal proposal variances are introduced for RWM-within-Gibbs algorithms.
• These locally optimal tunings are shown to theoretically outperform constant ones.
• Similar state-dependent step sizes are discussed for MALA-within-Gibbs samplers.
• MALA-within-Gibbs constitutes an efficient, yet computationally affordable option.
• Efficiency of local tunings depends on the variability in the hierarchical target.
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a b s t r a c t

The performance of RWM- and MALA-within-Gibbs algorithms for sampling from
hierarchical models is studied. For the RWM-within-Gibbs, asymptotically optimal tunings
for Gaussian proposal distributions featuring a diagonal covariance matrix are developed
using existing scaling analyses. This leads to locally optimal proposal variances that depend
on the mixing components of the hierarchical model and that correspond to the classical
asymptotically optimal acceptance rate of 0.234. Ignoring the local character of the optimal
scaling is possible, leading to an optimal proposal variance that remains fixed for the
duration of the algorithm; the corresponding asymptotically optimal acceptance rate is
then shown to be lower than 0.234. Similar ideas are applied to MALA-within-Gibbs
samplers, leading to efficient yet computationally affordable algorithms. Simplifications
for location and scale hierarchies are presented, and findings are illustrated through
numerical studies. The local and fixed approaches for the RWM- and MALA-within-Gibbs
are compared to competitive samplers in the literature.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The Randomwalk Metropolis algorithm (RWM) and the Metropolis-adjusted Langevin algorithm (MALA) are commonly
used to produce samples from arbitrary distributions π that may be complex, high-dimensional, or both (Hastings, 1970).
The idea is to build a Markov chain {X[j], j ∈ N} on a state space X by proposing candidates to be included in the process
according to some acceptance probability. The resulting Markov chain admits the n-dimensional target distribution π as its
unique invariant distribution. Hereafter, π shall also be used for denoting the target density on a state space X with respect
to Lebesgue measure.

Suppose that the time-j state of the Markov chain is X[j] = x. In a (symmetrical) RWM algorithm for instance, the
proposal distribution selected to generate a candidateY[j+1] = y for the next state of the chain is assumed to have a density
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qn(y; x) = qn(|y − x|) with respect to Lebesgue measure. A pragmatic choice, on which we focus in this article, is to draw
candidates from a N (x, σ 2In) for some σ > 0, where In is the n-dimensional identity matrix (the specific normal proposal
distribution usedwithMALA shall be described in Section 5). In implementing RWM andMALA samplers, one can update all
n components simultaneously (classical RWM/MALA), or divide them into subgroups to be updated consecutively (RWM-
or MALA-within-Gibbs). The latter are commonly preferred for sampling hierarchical models, as full conditional densities
are usually available.

The variance of the normal proposal distribution (σ 2) has a significant impact on the speed at which the process travels
across its state space (hereafter referred to as ‘‘efficiency’’), with extremal variances leading to slow-mixing samplers. Simply
put, large variances induce lazy processes (large candidate jumps that are refused), while small variances yield hyperactive
processes (tiny candidate steps that are accepted). To optimize exploration of the state space, we aim for candidate steps
that strike a balance, so that we have sizable steps that are still accepted a reasonable proportion of the time. Seeking for
this intermediate proposal variance is called the optimal scaling problem.

There exist, in Markov chain Monte Carlo theory, different notions of efficiency. In this paper, the term efficiency is
used as a measure of how rapidly the Markov chain explores its state space once stationarity has been reached. For finite-
dimensional chains, this can be measured by the expected squared jumping distance (ESJD) to be introduced in (13). In
an infinite-dimensional setting, the theoretical (or asymptotical) efficiency is measured through the speed function of the
limiting Langevindiffusion, to bediscussed in Sections 3 and4. In thehigh-dimensional limit (n → ∞), the ESJD is equivalent
to the limiting speed measure.

This paper studies the optimal scaling theory for RWM-within-Gibbs with some heuristics for MALA-within-Gibbs,
and then looks at the performance of both in practice. In particular, the theory exposed leads to the determination of
proposal variances and acceptance rates producing optimally mixing RWM-within-Gibbs chains. The theoretical results are
derived for high-dimensional hierarchical target densities with a large number of conditionally independent and identically
distributed (i.i.d.) components. The principal difference with traditional optimal scaling results lies in the local character of
the optimal proposal variances obtained,meaning that they vary fromone iteration to the next. The concept of local proposal
variances has been discussed in Girolami and Calderhead (2011) and Bédard (submitted for publication); in the latter,
scaling analyses of the RWM algorithm for hierarchical target densities are performed. Although theoretically appealing,
local proposal variances had to be obtained numerically in that context, which turned out to be rather impractical. With the
RWM-within-Gibbs sampler (and even the MALA-within-Gibbs), these variances may now be found analytically in a large
number of cases, leading to a personalized version of the proposal variance in a given iteration. The theoretical results derived
thus stand on the work in Bédard (submitted for publication), and as such are expressed as a corollary of its main theorem.

Thederivation of local proposal variances requires that certain expectations be obtained analytically from thehierarchical
model considered. The new approach is thus predicated on the tractability of the distribution of the conditionally
i.i.d. components, given the mixing parameters and (in practice) the observations. It is thus well suited to some hierarchical
models; alternatively,we propose a fixed optimal proposal variance,which is shown to be less efficient than the local ones. In
an attempt to quantify the benefit, in termsof efficiency, of using local proposal variances rather than a fixed one in theRWM-
andMALA-within-Gibbs, we present numerical illustrations. To add some perspective, we compare these samplers to single-
block RWM and MALA algorithms, along with some of their variants that include correlation among candidates. We also
include the AdaptiveMetropolis (AM) sampler of Haario et al. (2001), which tunes the proposal covariancematrix on the fly.

We shall realize that in tractable cases (and when there is not a strong correlation between mixing parameters and
the remaining components), local versions of RWM- and MALA-within-Gibbs can outperform fancy variants included in
the MCMC toolbox. Local MALA-within-Gibbs is the approach that provides the most convincing results, leading to net
efficiency gains in a wide range of situations, compared to a large set of competitors. These gains are however largely
influenced by the degree of variability present in the hierarchical model (a large variability sustaining the pursuit of local
proposal variances). Even in cases where local samplers do not allow for large gains in terms of theoretical efficiency, the
risk associated with these local variances is limited to the extra computational effort required for their implementation,
which is usually insignificant compared to a fixed variance.

The next section sets up the framework, while Section 3 reviews optimal scaling notions for high-dimensional i.i.d. and
hierarchical targets. Understanding these notions turns out to be useful in Section 4, where we derive optimal tunings for
the RWM-within-Gibbs for sampling from hierarchical models; extensions to MALA-within-Gibbs are then discussed in
Section 5. Section 6 focuses on single-level hierarchical models where the mixing parameter acts on the location or scale of
the conditionally i.i.d. components; a simulation study illustrates the theoretical results. An extension to inhomogeneous
proposal variances is introduced in Section 7, and we conclude by presenting a numerical study on a hierarchical target
model that falls slightly outside the assumptions of the theory (Section 8).

2. Framework

Consider the following (n + p)-dimensional target density π with respect to Lebesgue measure

π(x(n+p)) = f1(x1, . . . , xp)
p+n

i=p+1

f (xi|x1, . . . , xp); (1)
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