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a b s t r a c t

This study investigates composite quantile regression estimation for longitudinal data
on the basis of quadratic inference functions. By incorporating the correlation within
subjects, the proposed CQRQIF estimator has the advantages of both robustness and high
estimation efficiency for a variety of error distributions. The theoretical properties of
the resulting estimators are established. Given that the objective function is non-smooth
and non-convex, an estimation procedure based on induced smoothing is developed.
It is proved that the smoothed estimator is asymptotically equivalent to the original
estimator. The weighted composite quantile regression estimation is also proposed to
improve the estimation efficiency further in some situations. Extensive simulations are
conducted to compare different estimators, and a real data analysis is used to illustrate
their performances.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction 1

Longitudinal data frequently arises in many economic studies and biomedical research, where measurements on the 2

same individuals are taken repeatedly over time (Liang and Zeger, 1986; Diggle et al., 2002; Lin et al., 2015). Often, the 3

primary goal is to characterize the dependence between the response and the factors correctly, while incorporating the 4

correlated nature within subjects. At least three classes of important methodologies are widely used to analyze correlated 5

longitudinal data, including marginal models, mixed-effects models and transition models, and each modeling approach 6

serves specific analytic purposes. Among the threemethods, themarginal model primarily aims to estimate the population- 7

average effects of covariates on the response, and a well-known approach to statistical estimation is the use of generalized 8

estimating equation (GEE) proposed by Liang and Zeger (1986). However, the application of GEE is restricted by the 9

assumption that the correlation within subjects should be correctly specified. If the working correlation is misspecified, 10

the estimation efficiency of GEE is lost. In addition, the GEE method is very sensitive to outliers or contaminated data (Qu 11

and Song, 2004; Song, 2007). 12

To overcome some shortcomings of GEE, the quadratic inference functions (QIF) approach, which was first proposed by 13

Qu et al. (2000), has recently received considerable attention. The QIF approach considers the within cluster correlation 14

and is more efficient than the GEE approach when the working correlation is misspecified. The advantages of the QIF 15

method have facilitated its use in many models, see for example Qu and Li (2006) for varying coefficient models, Bai et al. 16

(2008) for partial linear models, Ma et al. (2014) and Lai et al. (2013) for partially linear single-index models, as well as 17
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Xue et al. (2010) and Wang et al. (2014) for generalized additive models and generalized additive partial linear models,1

respectively. For further discussions on the use of QIF over GEE, readers are referred to the review of Song et al. (2009).2

Although QIF is more robust to outliers than GEE because of its bounded influence function, as shown in Qu and Song3

(2004), it may still be sensitive to heavy-tailed error distributions. In the extreme, when the error distribution does not have4

a finite second moment, the asymptotic normality of the estimator does not hold. This problem is obviously inherited from5

the standard least squares (LS) procedure for independent data. Median regression, as a special case of quantile regression6

(Koenker, 2005), is more robust to heavy-tailed error distribution but can have arbitrarily low efficiency than LS regression.7

To address this problem, Zou and Yuan (2008) proposed composite quantile regression (CQR) to obtain a highly efficient and8

robust estimator, which shows significant improvement over median regression in terms of estimation efficiency, and has9

also been extended to nonparametric (Kai et al., 2010) and semiparametric models (Kai et al., 2011) for cross-sectional data.10

Motivated by its superior performance, we investigate the performance of this method for longitudinal data by combining11

CQR with QIF in this study. Note that CQR is an estimation method for estimating the conditional mean of the response,12

by combining information from multiple quantile levels, instead of trying to estimate the conditional quantiles as its name13

might suggest.14

Jiang et al. (2012) studied the weighted CQR (WCQR) for independent data. The motivation is that the use of the same15

weight at different quantile levels is generally not optimal. By minimizing the asymptotic variance of the WCQR estimator,16

the optimal weight can be obtained. The simulation results in Jiang et al. (2012) showed that WCQR has better performance17

than CQR for many error distributions. WCQR has also been applied to the double-threshold autoregressive conditional18

heteroscedastic (Jiang et al., 2014) and nonparametric regression models (Sun et al., 2013). However, for correlated data,19

whether the WCQR can still improve the estimation efficiency over CQR is unclear. To this end, on the basis of CQR and QIF20

(CQRQIF), we further propose the weighted CQRQIF (WCQRQIF) method for longitudinal data. Simulations demonstrated21

that WCQRQIF is better than CQRQIF for some error distributions.22

The remainder of this paper is organized as follows. Section 2 investigates CQR combined with the QIF method and uses23

induced smoothing (Brown and Wang, 2005) to obtain the estimator in practice. Moreover, the large sample properties of24

both the CQRQIF estimator and the smoothing estimator are established. Section 3 developsWCQRQIF estimator to improve25

efficiency further. Section 4 presents numerical studies, including simulations and a real data analysis, to illustrate the26

performance of the proposed approaches. Section 5 gives some concluding remarks. Appendix contains the technical proofs.27

2. CQR for correlated data28

2.1. Model and estimation29

We first briefly introduce CQR proposed in Zou and Yuan (2008), which dealswith the standard linear regression problem30

yi = X T
i β + ϵi,31

where ϵi is the mean zero error independent of covariates Xi. Although we are interested in estimating the mean regression32

function, it was noted in Zou and Yuan (2008) that the conditional quantile of yi at level τ ∈ (0, 1) is F−1(τ )+ X T
i β, where33

F−1 is the quantile function for ϵi. Thus, performing a quantile regression will also produce an estimate of β. Furthermore,34

it is natural to combine information from different quantile levels and solve the optimization problem35

min
β,ek

n
i=1

q
k=1

ρτk(yi − ek − X T
i β),36

where ρτk(u) = u(τk − I(u < 0)) is the check loss function, and 0 < τ1 < τ2 < · · · < τq < 1 are q quantile37

levels. By combiningmultiple quantile levels, higher efficiency in estimation is achieved compared to a single-level quantile38

regression, while being more robust compared to least squares procedure.39

Consider now the linear model for longitudinal data which is our focus in this study40

yij = X T
ij β + ϵij, i = 1, . . . , n, j = 1, . . . ,mi, (1)41

where Xij = (xij1, . . . , xijp)T , β = (β1, . . . , βp)
T , and ϵij is the random error with mean zero, independent of covariates Xij.42

Notably, we ignored intercept in themodel to reduce notation complexity slightly. In data analysis, the intercept is typically43

not of interest for mean regression.44

Denote yi = (yi1, . . . , yimi)
T , Xi = (Xi1, . . . ,Ximi)

T and ϵi = (ϵi1, . . . , ϵimi)
T , then model (1) can be written as45

yi = Xiβ + ϵi, i = 1, . . . , n. (2)46

Suppose that {Xi, yi}ni=1 are generated independently from (2). According to the CQR approach (Zou and Yuan, 2008), if47

we ignore the correlation within subjects, we can estimate β from48

(β̂, ê) = argminβ,e1,...,eq

n
i=1

mi
j=1

q
k=1

ρτk(yij − ek − X T
ij β), (3)49
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