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a b s t r a c t

Several equivariant estimators of multivariate location and scatter are studied, which are
highly robust, have a controllable finite-sample efficiency and are computationally feasible
in large dimensions. The most frequently employed estimators are not quite satisfactory
in this respect. The Minimum Volume Ellipsoid (MVE) and the Minimum Covariance
Determinant (MCD) estimators are known to have a very low efficiency. S-estimators with
a monotonic weight function like the bisquare have a low efficiency when the dimension p
is small, and their efficiency tends to one with increasing p. Unfortunately, this advantage
is outweighed by a serious loss in robustness for large p. Four families of estimators with
controllable efficiencies whose performance for moderate to large p has not been explored
to date are studied: S-estimators with a non-monotonic weight function, MM-estimators,
τ -estimators, and the Stahel–Donoho estimator. Two types of starting estimators are
employed: the MVE computed through subsampling, and a semi-deterministic procedure
previously proposed for outlier detection, based on the projections with maximum and
minimum kurtosis. A simulation study shows that an S-estimator with non-monotonic
weight function can simultaneously attain high efficiency and high robustness for p ≥ 15,
while anMM-estimatorwith a particular weight function can be recommended for p < 15.
For both recommended estimators, the initial values are given by the semi-deterministic
procedure mentioned above.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction 1

Sample means and covariances are basic elements of most procedures in multivariate analysis. They are the maximum 2

likelihood estimators for multivariate normal data. It is known, however, that even a small proportion of atypical 3

observations may seriously affect them. A large number of approaches have been proposed – beginning with Gnanadesikan 4

and Kettenring (1972) – to replace the sample mean vector and covariance matrix by a ‘‘location vector’’ and ‘‘scatter 5

matrix’’ that are ‘‘robust’’, in the sense that they are not seriously affected by a small proportion of atypical observations. 6

At the same time, it is desired that they are ‘‘efficient’’ in the sense that for normal data they should be near the classical 7

sample mean and covariance matrix. 8

Both robustness and efficiency can be measured in different ways. The simplest robustness measure is the breakdown 9

point which, although important, does not give enough information about the estimator’s behavior under contamination. A 10
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more informative measure is the maximum bias under contamination; see Maronna et al. (2006) for details. The efficiency1

of scatter matrices can also be measured in several ways. The existence of different estimators poses the problem of2

choosing themost adequate ones. Several criteriamust be taken into account for this purpose. The first two are naturally the3

robustness and the efficiency. It will be argued that they are not independent of each other; more precisely, that unless the4

number p of variables is small, in order to ensure an adequate degree of robustness it is necessary to control the efficiency.5

Controlling the efficiency is also necessary to make the different estimators comparable.6

Another criterion, which is especially important for large p is the computing time. Most robust estimators are computed7

iteratively starting from some initial estimator, whose computation is the most time-consuming part of the procedure. For8

all affine-equivariant estimators, the initial estimator requires some form of subsampling, and the number of subsamples9

required to attain a desirable degree of robustness grows rapidly with p. It is therefore desirable to find alternatives to the10

usual forms of subsampling.11

Therefore, the authors’ goal is to select the most satisfactory estimators of multivariate location and scatter, in the sense12

that they (a) are highly robust, in the sense of having not only a high breakdownpoint but also a relatively low contamination13

bias; (b) have a controllable finite-sample efficiency, and (c) are computationally feasible for large p.14

The most frequently employed estimators do not combine efficiency and robustness. The Minimum Volume Ellipsoid15

estimator (MVE) (Rousseeuw, 1985) is highly bias-robust, but has a very low efficiency: namely, its asymptotic efficiency16

is zero. The Minimum Covariance Determinant (MCD) estimator also has low efficiency, unless the user accepts a very low17

breakdown point. S-Estimators (Davies, 1987) with a monotonic weight function like the bisquare have a low efficiency18

for small dimension p. Rocke (1996) – and more generally Tyler (1994) – showed that their efficiency tends to one with19

increasing p. Unfortunately, this advantage is outweighed by a serious increase of the contamination bias for large p.20

There are several families of estimators that might possess properties (a)–(b)–(c) above. But although their asymptotic21

properties have been studied theoretically, little is known about their finite-sample behavior and implementation. Four22

families of estimators, all of which are known to fulfill goals (a) and (b) are chosen for this study : S-estimators with a non-23

monotonic weight function which depends on p (Rocke, 1996); MM-estimators (Tatsuoka and Tyler, 2000); τ -estimators24

(Lopuhaä, 1991); and the estimator proposed by Stahel (1981) and Donoho (1982). All of them can be tuned to control25

efficiency without affecting the breakdown point. More details about them are given in the next section.26

To help achieve the above goals, two elements are introduced, which although not new, have not been used before27

in this context, The first one concerns the starting values, which strongly affect the performance of an estimator. The28

subsampling approach usually employed for computing the starting values is very expensive for large dimensions. This29

study demonstrates that a semi-deterministic equivariant procedure, initially proposed by Peña and Prieto (2007) for outlier30

detection, dramatically improves both the computing times and the statistical performances of the estimators. The second31

one concerns the loss function ρ. Besides the popular bisquare ρ, a ρ-function is introduced that has been shown to possess32

certain favorable properties for time series (Muler and Yohai, 2002). It is demonstrated that it outperforms the bisquare33

function in most cases.34

This study only considers equivariant estimators. There exist many non-equivariant proposals (see e.g. Hubert et al.,35

2015, and references therein); but the comparison between equivariant and non-equivariant estimators is difficult. In36

particular, a non-equivariant estimator is more difficult to tune for a given efficiency, since the latter depends on the37

correlations.38

An extensive simulation study shows that the Rocke estimator, with adequate choices for ρ, tuning and starting values,39

outperforms its competitors for dimensions≥ 15, and the same can be said of the MM estimator for dimensions <15.40

Summing up, the contribution of this article is to study several estimators ofmultivariate location and scatter, to calculate41

the tuning constants that allow to control their efficiency, to introduce a non-standard loss functionwhich improves on their42

performances, to introduce a non-standard initial estimator that yields both lower computing times and a better statistical43

performance, and to give specific recommendations for the choice of an estimator.44

The contents of the paper are as follows. Section 2 reviews the estimators to be considered in this study. In Section 345

we discuss the choice of the ρ-function for MM- and τ -estimators. Section 4 deals with computational details. In Section 546

the estimators are compared through a simulation study. In Section 6 the estimators are applied to a real dataset. Finally47

Section 7 summarizes results. An Appendix is available online as Supplementary material (see Appendix A). It contains48

approximations for the tuning constants, results on the robustness of the Peña–Prieto procedure, details on the computation49

of the MVE and the full results of the simulations.50

2. Review of estimators51

This section describes the three families of estimators that will be considered in this study. The first are M- and MM-52

estimators, which are based on the minimization of a loss function of the Mahalanobis distances. They can be seen as53

weighted classical estimatorswithweights depending on theMahalanobis distances. The second are the estimators based on54

theminimization of a robust scale ofMahalanobis distances. If the scale is ‘‘smooth’’, these estimators satisfy the same type of55

estimating equations asM-estimators, and can therefore also be seen as weighted classical estimators. The third type is the56

Stahel–Donoho estimator, which is a weighted classical estimator with weights depending on an ‘‘outlyingness’’ measure;57

but unlike the two former families, here the outlyingness depends on the one-dimensional data projections instead of the58

Mahalanobis distances.59
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