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a b s t r a c t

Working regression models are often parsimonious for practical use and however may
be biased. This is because either some strong signals to the response are not included
in working models or too many weak signals are excluded in the modeling stage, which
make cumulative bias. Thus, estimating consistently the parameters of interest in bi-
ased working models is then a challenge. This paper investigates the estimation prob-
lem for linear transformation models with three aims. First, to identify strong signals in
the original full models, a sufficient dimension reduction approach is applied to transfer-
ring linear transformation models to pro forma linear models. This method can efficiently
avoid high-dimensional nonparametric estimation for the unknown model transforma-
tion. Second, after identifying strong signals, a semiparametric re-modeling with some
artificially constructed predictors is performed to correct model bias in working mod-
els. The construction procedure is introduced and a ridge ratio estimation is proposed
to determine the number of these predictors. Third, root-n consistent estimators of the
parameters in working models are defined and the asymptotic normality is proved. The
performance of the new method is illustrated through simulation studies and a real data
analysis.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Consider the linear transformation model:

H(Y ) = X⊤β + ϵ, (1)

where Y is the response variable, H(·) denotes an unknown monotone transformation function, X = (X1, X2, . . . , Xp)
⊤ is

the p-dimensional predictor vector having mean zero, β = (β1, β2, . . . , βp)
⊤ is the regression parameter vector of interest,

and the error ϵ, which is independent of X , has a continuous distribution. As H is unknown, without loss of generality, we
assume that the L2 norm of β is one. This model, which circumvents the so-called curse of dimensionality, is widely used in
statistical analysis.

In practical use, it is often not to contain all the predictors in aworkingmodel aswhen there aremanypredictors,we often
remove those ‘weak’ signals for the response such that a parsimonious working model can be built. This is particularly the
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case in high-dimensional paradigms because towell estimate the parameter of interest β , variable selection is indispensable
and hopefully only those ‘strong’ signals are retained in the working model. Here ‘strong’ signals are reflected by the
magnitudes of the corresponding coefficients βi. To have estimation consistency, model sparsity is an usual assumption.
That is, a small portion of the components of β are assumed to be significantly non-zero and the others are zero. However,
this is often hard to judge. In practice, it is often that many weak signals with small coefficients, but non-zero coefficients in
themodel are removedout from the regression function.When thenumber of these predictors is large, the cumulative bias of
workingmodel is often not negligible. Further the selection process would also unwittingly rule out some strong signals. All
these cause the difficulty of having estimation consistency. Relevant references includes Leeb and Pötscher (2005) and Zhang
and Huang (2008) who have observed similar problems. For semiparametric or nonparametric modeling, parsimonious
modeling is even more important, otherwise, consistent estimation is harder to achieve because nonparametric estimation
would be involved. The linear transformation model is an example as the function H(·) is nonparametric.

Lin et al. (2016) investigated this issue for linear models. They proposed a bias correction method to achieve estimation
consistency via a semiparametric remodeling. Their method highly relies on the linear model structure, and the two
methods proposed by Lin et al. (2016), which select quasi-instrumental variables for the semiparametric remodeling, would
be complex to implement and theoretically do not have the consistency of the estimated number of quasi-instrumental
variables. For the linear transformation model under study, the problem is more difficult. First, as the model transformation
function H is unknown and when X is high-dimensional, it is not a wise idea to use a nonparametric method to estimate
the transformation function H and then the parameter of interest. To have an estimation procedure without estimating the
transformation function H , our idea used in this paper is to apply a sufficient dimension reduction approach to transferring
the original model to an equivalent pro forma ‘linear’ model. With this new formulation, estimating the transformation
functionH is completely averted. The key for this method towork is the equivalence of strong andweak signals between the
original nonparametric transformation and the pro forma linearmodel. This will be confirmed in the next section. Therefore,
for bias correction, we will work on the pro forma linear model and then, if necessary, establish a new transformation (may
be still nonparametric) to fit data. It is worthmentioning that unlike the classical linearmodel, given the selected predictors,
the conditional expectation of the error in this pro forma ‘linear’ model is not centered, while it just has a zero expectation
of the product of the error and the predictors. An idea in spirit similarly as that of Lin et al. (2016) is used to construct some
‘new’ predictors such that a semiparametric re-modeling is possible to remove bias. However, as the linearity is just pro
forma, the bias correction is more delicate than that in Lin et al. (2016). The detail will be elaborated in Section 3. Second,
we suggest a ridge ratio estimation (RR) to estimate the number of those constructed predictors. The consistency will be
proved.

We now formulate the model. Assume for simplicity that the first q predictors, represented by I = {1, 2, . . . , q}, are
relatively strong signals, and the last p − q predictors are weak signals but not necessarily irrelevant to the response. We
rewrite X and β as X = (Z⊤,U⊤)⊤ and β = (β⊤

I , β⊤

Ic )
⊤, respectively, where Z = (X1, . . . , Xq)

⊤, U = (Xq+1, . . . , Xp)
⊤ and

Ic is the compliment of I in the complete set {1, . . . , p}. Correspondingly, the full model is rewritten as

H(Y ) = Z⊤βI + ϵ̃, (2)

where ϵ̃ = U⊤βIc + ϵ denotes the error term in this working model. A typical example is a working model that is
based on a variable selection procedure such as the LASSO (Tibshirani, 1996). As commented above, when some strong
signals are not included in the regression part or when the full model (1) is not sparse, the working model (2) could be
biased:

E(ϵ̃|Z) =


j∉I

βjE(Xj|Z) ≠ 0. (3)

Consequently, it is of importance to obtain a consistent estimate of βI or more precisely the normalized βI as in the
nonparametric transformation model, the scale of βI is not identifiable. Without notational confusion, we still use βI as
its normalized one. The goal of the present paper is to construct a bias-corrected model and to obtain a root-n consistent
estimate of βI. Our idea is to first transfer the linear transformation model to an equivalent pro forma ‘linear’ model such
that the modeling becomes easier without involving nonparametric estimation for the model transformation H . After that,
we introduce a new method to conveniently determine the number of ‘‘new’’ predictors for the purpose of bias correction.
The semiparametric re-modeling can then be implemented for the purpose of estimation consistency.

The rest of this paper is organized as follows. In Section 2, we transfer the originalmodel as an equivalent pro forma linear
model. We then give the definition of the index set of relatively strong signals in a non-sparse transformation model and
the identifiability of the index set. In Section 3, after introducing a vector of ‘new’ predictors, a partially linear remodeling
is implemented in which the parameters of interest are in the linear component when both the response and regression
function are re-centered. The ridge ratio method to determine the number of ‘new’ predictors is also suggested in this
section and the asymptotic properties are derived. It is noteworthy that the identifiability of the index set is mainly for
theoretical purpose such that the selected model is non-random. For practical use, it is not necessary. This can be seen in
Section 3. Numerical simulations are conducted to examine the performance of the newmethod in Section 4. All the proofs
are postponed to Appendix.
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