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a b s t r a c t

The robust principal component analysis (RPCA) refers to the decomposition of an observed
matrix into the low-rank component and the sparse component. Conventional methods
model the sparse component as pixel-wisely sparse (e.g., ℓ1-norm for the sparsity). How-
ever, in many practical scenarios, elements in the sparse part are not truly independently
sparse but distributed with contiguous structures. This is the reason why representative
RPCA techniques fail to work well in realistic complex situations. To solve this problem, a
Bayesian framework for RPCA with structured sparse component is proposed, where both
amplitude and support correlation structure are considered simultaneously in recovering
the sparse component. The model learning is based on the variational Bayesian inference,
which can potentially be applied to estimate the posteriors of all latent variables. Experi-
mental results demonstrate the proposed methodology is validated on synthetic and real
data.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction 1

High-dimensional data, such as image and video processing, documents, web search, and biological data often lie in a 2

low-dimensional structure or manifold. As the fields of optimization and statistics develop, the problem of exploring and 3

exploiting low-dimensional structure in high-dimensional data has been extensively studied. 4

Principal component analysis (PCA) (Serneels and Verdonck, 2008; Giordani and Kiers, 2006), as a classical and popular 5

unsupervised dimensionality reduction approach, has wide applications in computer vision and pattern recognition. To a 6

large extent, PCA efficiently develops the best ℓ2-norm low-rank approximation of the observed data. However, ℓ2-norm is 7

sensitive to outliers which often appear in practical situations. Therefore, PCA may not get the optimal performance under 8

a large corruption, even if the corruption affects only a small part of the data. 9

To address the brittleness of classical PCA with respect to outliers, robust principal component analysis (RPCA) (Candès 10

et al., 2011) has been proposed to decompose the observed datamatrix Y ∈ Rm×n into a low-rankmatrix X ∈ Rm×n (rank: 11

r ≪ min{m,n}) and a sparse matrix E ∈ Rm×n (with sparse outliers). This research seeks to recover the low-rank matrix X 12

and the sparse matrix E from Y by solving the following optimization problem 13

min
X,E

rank(X)+ λ∥E∥0, s.t. Y = X + E, (1) 14
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where ∥E∥0 denotes the number of nonzero entries in E and λ is a positive weighting parameter. Unfortunately, (1) is a1

highly nonconvex optimization problem. However, one can obtain a tractable optimization problem by relaxing (1) that2

replaces the ℓ0-norm with the ℓ1-norm and the rank with the nuclear norm, yielding the following convex optimization3

problem4

min
X,E

∥X∥∗ + λ∥E∥1, s.t. Y = X + E, (2)5

where∥·∥∗ and∥·∥1 denote thematrix nuclear norm (the sumof its singular values) and the ℓ1-norm (the sumof the absolute6

values of entries), respectively. Candès et al. (2011) showed that under broad conditions the underlying low-rank component7

X and the sparse component E can be exactly recovered with high probability by solving the above convex optimization8

problem. As a promising tool, RPCA has been successfully applied to many research fields, such as video surveillance (Zhou9

et al., 2013), face recognition (Wagner et al., 2012), subspace clustering (Liu et al., 2013) and image alignment (Peng et al.,10

2012).11

In fact, it is an identifiability issue to perfectly disentangle the low-rank and the sparse components. Tomake the problem12

meaningful, we first need to impose that the low-rank component is not sparse. As done in Candès et al. (2011), the singular13

value decomposition of the real low-rank component X0 is written as14

X0 = UΣV ∗, (3)15

where U ,V are the left-singular and the right-singular matrices. Suppose that the rank of X0 is r , the incoherence condition16

with parameter µ is defined as17

max
i

∥U∗ei∥2
≤
µr
m
, max

i
∥V ∗ei∥2

≤
ur
n
, ∥UV ∗

∥∞ ≤


µr
mn
, (4)18

where ∥M∥∞ = maxi,j |Mij| and ei is the unit vector that has a one in the ith element and zeros everywhere else. As discussed19

in Candès et al. (2011), the incoherence condition asserts that for small values ofµ, the singular vectors of X0 spread out. In20

other words, the low-rank component X0 is not sparse. To avoid another meaningless situation, we assume that the sparsity21

pattern of the real sparse component is selected uniformly at random (the sparse component is not low-rank). Under these22

assumptions that the rank of the low-rank component is not too large and the sparse component is reasonably sparse, the23

model (2) can perfectly recover the low-rank and the sparse components. The result is given in the following theorem.24

Theorem 1 (Candès et al., 2011). Suppose X0 obeys (4). Fix any m × n matrix Ψ of signs. Suppose that the support set Ω25

of E0 is uniformly distributed among all sets of cardinality w, and that sgn([E0]ij) = Ψij for all (i, j) ∈ Ω . Then, there is26

numerical constant c such that with probability at least 1 − cn−10
1 (over the choice of support of E0, n1 = max(m, n)), the27

model (2)with a range of correct values of λ can exactly recover the real low-rank and the real sparse components, provided that28

rank(X0) ≤ ρrn2µ
−1(log n1)

−2 andw ≤ ρsmn. In this equation,ρr andρs are positive numerical constants and n2 = min(m, n).29

Algorithms developed for the RPCA problem are often intuitive extensions of low-rank matrix recovery, therefore share30

a similar trajectory. Among the different methods proposed are heuristic deterministic approaches based on nuclear norm31

relaxation, such as singular value thresholding (SVT) (Cai et al., 2010), singular value projection (SVP) (Jain et al., 2010), an32

accelerated proximal gradient algorithm (APG) (Toh and Yun, 2010), the augmented lagrange multiplier method (ALM) (Lin33

et al., 0000) etc. Although these algorithms may work well theoretically, they have limited reconstruction effects since the34

nuclear normmay not be a good surrogate to the rank function. To get amore accurate and robust approximation to the rank35

function, Hu et al. proposed a novelmethod called truncated nuclear norm regularization (TNNR) (Hu et al., 2013)which only36

minimized the smallest p singular values to recover the low-rank component. Noted that all the existing nonconvex penalty37

functions were concave and their gradients were decreasing functions, an iteratively reweighted nuclear norm (IRNN) was38

suggested in Lu et al. (2014). Inspired by the paradigm of ℓp-norm in compressive sensing (Ince et al., 2013), some try to39

expand this concept to the traditional nuclear norm (Lu, 2014; Lu et al., 2015; Nie et al., 2012; Peng et al., 2014), which can40

approximate the rank function better.41

In addition to the above deterministicmethods, some statistical algorithms express the RPCA as the solution of a Bayesian42

inference problem and apply statistical tools to solve it. The statistical procedures (Manteiga and Vieu, 2007), recently43

gaining popularity, offer several advantages over deterministic methods. First, prior knowledge about the rank of matrix44

is not necessary, and the way to estimate the unknown rank is similar to the automatic relevance determination strategy45

in machine learning. On the other hand, algorithmic parameters are treated as stochastic quantities so that it is insensitive46

to the initialization of parameters. In Ding et al. (2011), the authors modeled the singular values of low-rank component X47

and the entries of sparse component E with beta-Bernoulli priors, and the resulting algorithm used a Markov Chain Monte48

Carlo (MCMC) sampling scheme with high computational complexity for inference. Babacan et al. (2012) adopted sparse49

Bayesian learning principles to recover the sparse component and the low-rank component, which started from a matrix50

factorization formulation and enforced the low-rank constraint in the process through the sparsity constraint. The complex51

noise, as considered in Zhao et al. (2014), results in representing data noise as a mixture of Gaussian, which could fit a wide52

range of noises and provide high recovery performance.53

However, the present methods obviously impose the sparsity constraint on individual coefficient of E , and ignore54

the spatial connection of nonzero coefficients. In many practical scenarios, the distributions of coefficients in the sparse55
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