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The robust principal component analysis (RPCA) refers to the decomposition of an observed
matrix into the low-rank component and the sparse component. Conventional methods
model the sparse component as pixel-wisely sparse (e.g., £1-norm for the sparsity). How-
ever, in many practical scenarios, elements in the sparse part are not truly independently
sparse but distributed with contiguous structures. This is the reason why representative
RPCA techniques fail to work well in realistic complex situations. To solve this problem, a
Bayesian framework for RPCA with structured sparse component is proposed, where both
amplitude and support correlation structure are considered simultaneously in recovering
the sparse component. The model learning is based on the variational Bayesian inference,
which can potentially be applied to estimate the posteriors of all latent variables. Experi-
mental results demonstrate the proposed methodology is validated on synthetic and real
data.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

High-dimensional data, such as image and video processing, documents, web search, and biological data often lie in a
low-dimensional structure or manifold. As the fields of optimization and statistics develop, the problem of exploring and
exploiting low-dimensional structure in high-dimensional data has been extensively studied.

Principal component analysis (PCA) (Serneels and Verdonck, 2008; Giordani and Kiers, 2006), as a classical and popular
unsupervised dimensionality reduction approach, has wide applications in computer vision and pattern recognition. To a
large extent, PCA efficiently develops the best £,-norm low-rank approximation of the observed data. However, £,-norm is
sensitive to outliers which often appear in practical situations. Therefore, PCA may not get the optimal performance under
a large corruption, even if the corruption affects only a small part of the data.

To address the brittleness of classical PCA with respect to outliers, robust principal component analysis (RPCA) (Candeés
etal., 2011) has been proposed to decompose the observed data matrix Y € R™ " into a low-rank matrix X € R™*" (rank:
r <« min{m,n}) and a sparse matrix E € R™*" (with sparse outliers). This research seeks to recover the low-rank matrix X
and the sparse matrix E from Y by solving the following optimization problem

r)r(liEn rank(X) + A||Ello, s.t.Y =X+E, (1)
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where ||E||o denotes the number of nonzero entries in E and X is a positive weighting parameter. Unfortunately, (1) is a
highly nonconvex optimization problem. However, one can obtain a tractable optimization problem by relaxing (1) that
replaces the £y-norm with the £;-norm and the rank with the nuclear norm, yielding the following convex optimization
problem

min [|X|l +A[E]l, s.L.Y=X+E, (2)

where ||- || and ||-||; denote the matrix nuclear norm (the sum of its singular values) and the ¢,-norm (the sum of the absolute
values of entries), respectively. Candés et al. (2011) showed that under broad conditions the underlying low-rank component
X and the sparse component E can be exactly recovered with high probability by solving the above convex optimization
problem. As a promising tool, RPCA has been successfully applied to many research fields, such as video surveillance (Zhou
et al., 2013), face recognition (Wagner et al., 2012), subspace clustering (Liu et al., 2013) and image alignment (Peng et al.,
2012).

In fact, it is an identifiability issue to perfectly disentangle the low-rank and the sparse components. To make the problem
meaningful, we first need to impose that the low-rank component is not sparse. As done in Candes et al. (2011), the singular
value decomposition of the real low-rank component Xj is written as

X, =UXV*, (3)

where U, V are the left-singular and the right-singular matrices. Suppose that the rank of Xj is r, the incoherence condition
with parameter yu is defined as

max [Urel? < 20 maxViel? < . UVe < B (4)

i m i n mn

where |[M |l = max;; |[M;| and e; is the unit vector that has a one in the ith element and zeros everywhere else. As discussed
in Candés et al. (2011), the incoherence condition asserts that for small values of 1, the singular vectors of X, spread out. In
other words, the low-rank component Xj is not sparse. To avoid another meaningless situation, we assume that the sparsity
pattern of the real sparse component is selected uniformly at random (the sparse component is not low-rank). Under these
assumptions that the rank of the low-rank component is not too large and the sparse component is reasonably sparse, the
model (2) can perfectly recover the low-rank and the sparse components. The result is given in the following theorem.

Theorem 1 (Candes et al, 2011). Suppose Xy obeys (4). Fix any m x n matrix ¥ of signs. Suppose that the support set $2
of Ey is uniformly distributed among all sets of cardinality w, and that sgn([Epl;) = W for all (i,j) € 2. Then, there is
numerical constant c such that with probability at least 1 — cnl_w (over the choice of support of Ey, ny = max(m, n)), the
model (2) with a range of correct values of A can exactly recover the real low-rank and the real sparse components, provided that
rank(Xo) < prnop ' (lognqy) 2 and w < pgmn. In this equation, p, and ps are positive numerical constants and n, = min(m, n).

Algorithms developed for the RPCA problem are often intuitive extensions of low-rank matrix recovery, therefore share
a similar trajectory. Among the different methods proposed are heuristic deterministic approaches based on nuclear norm
relaxation, such as singular value thresholding (SVT) (Cai et al., 2010), singular value projection (SVP) (Jain et al., 2010), an
accelerated proximal gradient algorithm (APG) (Toh and Yun, 2010), the augmented lagrange multiplier method (ALM) (Lin
et al., 0000) etc. Although these algorithms may work well theoretically, they have limited reconstruction effects since the
nuclear norm may not be a good surrogate to the rank function. To get a more accurate and robust approximation to the rank
function, Hu et al. proposed a novel method called truncated nuclear norm regularization (TNNR) (Hu et al., 2013) which only
minimized the smallest p singular values to recover the low-rank component. Noted that all the existing nonconvex penalty
functions were concave and their gradients were decreasing functions, an iteratively reweighted nuclear norm (IRNN) was
suggested in Lu et al. (2014). Inspired by the paradigm of £,-norm in compressive sensing (Ince et al., 2013), some try to
expand this concept to the traditional nuclear norm (Lu, 2014; Lu et al., 2015; Nie et al., 2012; Peng et al., 2014), which can
approximate the rank function better.

In addition to the above deterministic methods, some statistical algorithms express the RPCA as the solution of a Bayesian
inference problem and apply statistical tools to solve it. The statistical procedures (Manteiga and Vieu, 2007), recently
gaining popularity, offer several advantages over deterministic methods. First, prior knowledge about the rank of matrix
is not necessary, and the way to estimate the unknown rank is similar to the automatic relevance determination strategy
in machine learning. On the other hand, algorithmic parameters are treated as stochastic quantities so that it is insensitive
to the initialization of parameters. In Ding et al. (2011), the authors modeled the singular values of low-rank component X
and the entries of sparse component E with beta-Bernoulli priors, and the resulting algorithm used a Markov Chain Monte
Carlo (MCMC) sampling scheme with high computational complexity for inference. Babacan et al. (2012) adopted sparse
Bayesian learning principles to recover the sparse component and the low-rank component, which started from a matrix
factorization formulation and enforced the low-rank constraint in the process through the sparsity constraint. The complex
noise, as considered in Zhao et al. (2014), results in representing data noise as a mixture of Gaussian, which could fit a wide
range of noises and provide high recovery performance.

However, the present methods obviously impose the sparsity constraint on individual coefficient of E, and ignore
the spatial connection of nonzero coefficients. In many practical scenarios, the distributions of coefficients in the sparse
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