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a b s t r a c t

The choice of kernel in an integro-difference equation (IDE) approach to model spatio-
temporal data is studied. By using approximations to stochastic partial differential
equations, it is shown that higher order cumulants and tail behavior of the kernel affect
how an IDE process evolves over time. The asymmetric Laplace and the family of stable
distributions are presented as alternatives to the Gaussian kernel. The asymmetric Laplace
has an extra parameter controlling skewness, whereas the class of stable distributions
includes parameters controlling both tail behavior and skewness. Simulations show that
failing to account for kernel shape may lead to poor predictions from the model. For an
illustration with real data, the IDE model with flexible kernels is applied to ozone pressure
measurements collected biweekly by radiosonde at varying altitudes. The results obtained
with the different kernel families are compared and it is confirmed that better model
prediction may be achieved by electing to use a more flexible kernel.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A spatio-temporal data set refers to data collected across a spatial field and over several time points. Climatological and
environmental variables provide several common and abundant examples of data recorded in space and time. In addition
to traditional examples of environmental space–time variables, such as temperature or precipitation, there is an increasing
ability to store and monitor the dynamics of different types of georeferenced processes. Data for housing costs, crime rates,
population growth, soil content, and disease incidence, are some of the many examples of variables that are of interest in
areas as diverse as spatial econometrics, epidemiology, and geography, to mention a few.

The field of time series has produced a rich body of literature during at least the last 50 years (Hamilton, 1994; Shumway
and Stoffer, 2011). Spatial statistics, despite the seminal work by Matheron (1963), was a fringe area as recently as the early
1990s (Cressie, 1993), but has since received a great deal of attention within the statistical community. Spatio-temporal
models stem naturally from these areas, but a systematic treatment of spatio-temporal statistical models has only recently
been developed (Cressie and Wikle, 2011). Compared to times series and spatial statistics, the fundamental challenge of
spatio-temporal models is to capture the interactions between the spatial and temporal components.

Three general methods are currently used to analyze data from spatio-temporal processes of the form {Xt(s) : s ∈ S, t ∈

T }, where s indexes the spatial domain S and t indexes the time domain T . The first involves an extension of the traditional
approach to modeling random fields, focusing on the first and second moment of the process. The goal is to find general
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families of space–time correlation functions of the form Cov(Xt(s), Xu(v)) = C(s, v, t, u), which are ‘‘smooth everywhere’’
and yet ‘‘allow different degrees of smoothness’’ (Stein, 2005). In this setting, both s and t are considered as continuous
indexes. This lends flexibility to the models, but requires dealing with potentially large covariance matrices. This approach
can thus have important computational drawbacks when large spatial domains or long time periods are considered.

A second common modeling approach for spatio-temporal data is an extension of deterministic dynamical models that
incorporates stochastic components. This leads to stochastic partial differential equation (SPDE) models. For instance, Jones
and Zhang (1997) consider the SPDE ∂

∂t Xt(s) − β ∂2

∂s2
Xt(s) + αXt(s) = δt(s), where δt(s) is a zero mean error process. This

SPDE is called a diffusion–injection equation and is just one of the various SPDE-based models commonly used for naturally
occurring physical processes (Heine, 1955; Zheng and Aukema, 2010).

The third method is to obtain an explicit description of the dynamics of the process by specifying its evolution as a
function of the spatial distribution of the process. A dynamic spatio-temporal model can be written as

Xt(s) = M(Xt−1(s), s, θ)+ εt(s), t = 1, . . . , T ,

where M represents a specific model configuration, governing the transfer of information from time t − 1 to time t . Here,
θ is a parameter vector, and εt(s) is a zero mean noise process which may have a spatially dependent covariance structure.
In these models, the process evolves as an entire spatial field over a discrete time component. Cressie and Wikle (2011)
strongly support this approach, and suggest a ‘‘hierarchical dynamical spatio-temporal model’’ of the form

Yt = BtXt + εt , εt ∼ N(0,Vt), t = 1, . . . , T , (1)

and

Xt = Mt(Xt−1, θ)+ ωt , ωt ∼ N(0,Wt), t = 1, . . . , T , (2)

where Yt is the vector of data, and Xt is a vector of latent variables representing an underlying process that is linked to Yt
through the incidence matrix Bt . Moreover, εt and ωt are noise terms with specified covariances Vt and Wt , respectively.

A specific case of the model described by Eqs. (1) and (2) is the integro-difference equation (IDE) spatio-temporal model.
We consider IDE models of the form

Xt(s) = eλ


k(s − u|θ)Xt−1(u)du + ωt(s), (3)

where k(·) is a redistribution kernel with parameter vector θ, and ωt(s) is an error process which may be spatially colored.
This kernel weights the contribution of the process at time t − 1 to the process at time t at location s. The scaling term λ
controls the growth or decay of the process. Typically, the center of the kernel for each location is somewhere near s, resulting
in nearby values being weighted more heavily than others. The spatial dependency in the IDE model arises from nearby
observations sharing large contributions from many of the same observations of the previous time point. Thus, the spatial
and temporal relationships interact with each other as the process evolves,producing a non-separable process. Furthermore,
the kernel width affects the smoothness of the resulting process.

Originally used by ecologists studying the growth and spread of species (Kot et al., 1996), integro-difference equations
were introduced for general spatio-temporal processes in Wikle and Cressie (1999). In Wikle (2002), the IDE kernel is
specified parametrically through a Gaussian distribution with unknown location and scale parameters. The stochastic
properties of the process that results from an IDE, such as stationarity and separability, are explored in Brown et al. (2000)
and Storvik et al. (2002). An important extension where the mean of the kernel is spatially indexed is presented in Wikle
(2002) and Xu et al. (2005).

Overall, the literature is dominated by IDE models based on Gaussian kernels. Though there is some mention of non-
Gaussian kernels, it is without exploring the modeling benefits and inferential issues arising from the use of more general
kernel families. Spatio-temporal data can have a variety of features that may not be represented well by a Gaussian kernel
IDE model. As shown here, these features include dispersion, extra-diffusion, and flexibility in local behavior. In this paper,
we focus on the exploration of the properties and the development of inferential methods to deal with IDE models based
on relatively simple non-Gaussian parametric families of kernels. Our main purpose is to show how using non-Gaussian
kernels in IDE modeling can add value to spatio-temporal modeling. We will show that, for hierarchical models as in
Eqs. (1) and (2), an IDE with a kernel more flexible than the Gaussian can lead to improved model performance and
prediction, and capture a wider array of process dynamics. We restrict the scope of this paper to one-dimensional space for
ease in computation, butwe expect that the same advantages arising from the use of non-Gaussian kernels in one dimension
will also emerge when using non-Gaussian kernels in two dimensions.

The rest of the paper is organized as follows. In Section 2,weuse two approximations of the IDE to differential equations to
theoretically justify the use of more flexible kernels. Section 3 providesmodeling techniques for the IDEmodel and presents
two alternatives to the Gaussian kernel. Direct comparison of model fit and prediction is performed for each kernel choice
in Section 4, for both real and synthetic data. Concluding remarks are made in Section 5, and the four Appendices collect
technical details.
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