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a b s t r a c t

Density estimation is a crucial component of many machine learning methods, and
manifold learning in particular, where geometry is to be constructed from data alone. A
significant practical limitation of the current density estimation literature is that methods
have not been developed for manifolds with boundary, except in simple cases of linear
manifolds where the location of the boundary is assumed to be known. This limitation is
overcome by developing a density estimation method for manifolds with boundary that
does not require any prior knowledge of the location of the boundary. To construct an
appropriate estimator, statistics are introduced that provably approximate the distance
and direction of the boundary, which allows us to apply a cut-and-normalize boundary
correction. Then, multiple cut-and-normalize estimators are used to build a consistent
kernel density estimator that has uniform bias, at interior and boundary points, on
manifolds with boundary.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Nonparametric density estimation has become an important tool in statistics with a wide range of applications
to machine learning, especially for high-dimensional data. When lack of ‘‘first principles’’ understanding of a process
limits effective parametric modeling, data-driven approaches are valuable. The exponential relationship between model
complexity (often quantified as dimensionality) and data requirements, colloquially known as the curse of dimensionality,
demands that new and innovative priors be developed. A particularly effective assumption is the geometric prior,1 which
assumes that the data lies on a manifold that is embedded in the ambient Euclidean space where the data is sampled. The
geometric prior is nonparametric in that it does not assume a particular manifold or parametric form, merely that the data
is restricted to lying on some manifold. This prior allows us to separate the intrinsic dimensionality of the manifold, which
may be low, from the extrinsic dimensionality of the ambient space, which is often high.

Recently the geometric prior has received some attention in the density estimation field (Hendriks, 1990; Pelletier, 2005;
Kim and Park, 2013; Ozakin and Gray, 2009), although use of these methods remains restricted for several reasons. For
example, the methods of Hendriks (1990) and Pelletier (2005) require the structure of the manifold to be known a priori.
Recently, in the applied harmonic analysis literature amethod known as diffusionmaps has been introducedwhich learns the
structure of the manifold from the data (Belkin and Niyogi, 2003; Coifman and Lafon, 2006). These methods have also been
extended to a large class of noncompact manifolds (Hein, 2005, 2006; Hein et al., 2005) with natural assumptions on the
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1 We should note that the word ‘‘prior’’ here is used only to indicate an assumption which is implicitly placed on the data (namely that it lies on a
manifold) and the geometric prior should not be interpreted as a prior in the sense of Bayesian inference.
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geometry of the manifold. The assumptions introduced in Hein (2005) include all compact manifolds, as well as many non-
compact manifolds, such as any linear manifold, which implies that standard kernel density estimation theory on Euclidean
spaces is included as a special case. While these manifold learning methods make implicit assumptions on the geometry of
the underlying manifold (such as bounded curvature), kernel density estimation requires knowledge of the dimension of
themanifold in order to obtain the correct normalization factor. For ease of exposition, we will assume the dimension of the
manifold is known, although this is not necessary: In Appendix B we include a practical method of empirically tuning the
bandwidth parameter that also estimates the dimension. Following Coifman and Lafon (2006), Hein (2005, 2006) and Hein
et al. (2005), in this manuscript we will assume that the data points lie exactly on the manifold embedded in the ambient
Euclidean space. In fact, there is evidence that kernel based manifold learning methods are robust to perturbations which
are smaller than the bandwidth parameter (Coifman and Lafon, 2006).

The remaining significant limitation of applying existingmanifold density estimators to real problems is the restriction to
manifolds without boundary. One exception is the special case of subsets of the real line where the location of the boundary
is assumed to be known. This case has been thoroughly studied, and consistent estimators have been developed (Jones, 1993;
Jones and Foster, 1996; Jones and Zhang, 1999; Chen, 2000; Karunamuni and Alberts, 2005; Malec and Schienle, 2014).

Here we introduce a consistent kernel density estimator for manifolds with (unknown) boundary that has the same
asymptotic bias in the interior as on the boundary. The first obstacle to such an estimator is that a conventional kernel does
not integrate to one near the boundary. Therefore the normalization factor must be corrected in a way that is based on the
distance to the boundary, which is not known a priori.

To locate the boundary, we couple the standard kernel density estimator (KDE) with a second calculation, a kernel
weighted average of the vectors from every point in the data set to every other point, which we call the boundary direction
estimator (BDE).We present asymptotic analysis of the BDE that shows that if the base point is near a boundary, the negative
of the resulting average vector will point toward the nearest point on the boundary. We also use the asymptotic expansion
of this vector to find a lower bound on the distance to the boundary. Our new density estimate at this base point does
not include the data which lie beyond the lower bound in the direction of the boundary. This creates a virtual boundary
in the tangent space which is simply a hyperplane (dimension one less than the manifold) at a known distance from the
base point. Creating a known virtual boundary allows us to bypass the above obstacle—we can now renormalize the kernel
so that it integrates exactly to one at each base point, similar to the cut-and-normalize kernels that are used when the
boundary is a priori known. For points in the interior (or for manifolds without boundary), the lower bound on the distance
to the boundary goes to infinity in the limit of large data, and we recover the standard kernel density estimation formula.
Moreover, using standard methods of constructing higher order kernels, we find a formula for a kernel density estimate
with the same asymptotic bias for interior points and points on the boundary.

In Section 2 we briefly review nonparametric density estimation on embedded manifolds. The boundary correction
method using BDE is introduced in Section 3, and the results are demonstrated on several illustrative examples.We conclude
with a brief discussion in Section 4.

2. Background

Assume one is given N samples {Xi}
N
i=1 (often assumed to be independent) of a probability distribution on Rn with a

density function f (x). The problem of nonparametric density estimation is to find an estimator fh,N(x) that approximates
the true density function. A kernel density estimator is typically constructed (Parzen, 1962; Loftsgaarden and Quesenberry
et al., 1965; Whittle, 1958) as

fh,N(x) =
1

Nhn

N
i=1

K


∥x − Xi∥

h


(1)

where the kernel function is defined via a univariate shape function K and h → 0 as N → ∞. The kernel function must be
normalized to integrate to 1 for each h to have a consistent estimator.

The standard KDE formulation (1) assumes that the density is supported on the Euclidean space from which the data
is sampled. However, real data may be restricted to lie on a lower dimensional submanifold of this Euclidean space. This
assumption, whichwe call the geometric prior, is a potential workaround to the curse of dimensionality for high dimensional
data. Since the geometric prior assumes that the density is supported on a submanifold of the ambient Euclidean space, we
may assume that the intrinsic dimensionality is small even when the extrinsic dimensionality is large.

Nonparametric density estimation on manifolds essentially began with Hendriks (1990), who modernized the Fourier
approach ofWhittle (1958) using a generalized Fourier analysis on compact Riemannianmanifoldswithout boundary, based
on the eigenfunctions of the Laplace–Beltrami operator. The limitation of Hendriks (1990) in practice is that it requires the
eigenfunctions of the Laplace–Beltrami operator on the manifold to be known, which is equivalent to knowing the entire
geometry. A kernel-basedmethod of density estimationwas introduced in Pelletier (2005). In this case the kernel was based
on the geodesic distance between points on the manifold, which is again equivalent to knowing the entire geometry. More
recently, a method which uses kernels defined on the tangent space of the manifold was introduced (Kim and Park, 2013).
However, evaluating the kernel of Kim and Park (2013) requires lifting points on the manifold to the tangent space via the
exponentialmap,which yet again is equivalent to knowing the geometry of themanifold. (See, for example, Rosenberg, 1997
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