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a b s t r a c t

Empirical best predictors are studied under area-level Poisson mixed models with time ef-
fects. Four cases are considered. The first two cases use independent time random effects.
In the second two cases, the time effects follow an autoregressive process of order one. The
four models are fitted by themoment-basedmethod and the corresponding empirical best
predictors are derived and compared with plug-in predictors. Several simulation experi-
ments investigate the performance of both predictors. A parametric bootstrap procedure is
considered for estimating the mean squared error. The developed methodology is applied
to estimate the proportion of people under the poverty line by counties and sex in Galicia
(a region in north-west of Spain).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Developed countries are interested on the estimation of poverty indicators for thewhole country and for small territories.
In Galicia (north-west of Spain) the Spanish living conditions survey (SLCS) provides information about people with
equivalent personal incomes below the poverty line. This survey has a planned sample size large enough for obtaining
reliable direct estimates for Galicia, but not for their 53 counties. Small area estimation (SAE) dealswith this kind of problems
by introducing indirect estimators. See the monograph of Rao and Molina (2015) or the reviews of Jiang and Lahiri (2006),
Rao (2008) and Pfeffermann (2013) for an introduction to SAE.

This paper takes data from the SLCS for estimating poverty proportions. The indicator of interest is defined as the count
of people under the poverty line divided by the size of the small area. For estimating counts and proportions, the SAE
model-based approach employs models at the unit or at the area level. In both cases linear mixed model (LMM) and gener-
alized linear mixedmodels (GLMM) are used. Nevertheless, the literature showsmore applications based on area-level than
on unit-level models. This is because the former applications are in general easier to carry out because of the simplicity of
the procedure and the availability of aggregated data from administrative registers.

Under the area-level approach, Esteban et al. (2011, 2012), Marhuenda et al. (2013, 2014) and Morales et al. (2015)
derived poverty proportion estimators based on linear mixed models. They reported poverty indicators for Spanish
provinces. Saei and Chambers (2003), Johnson et al. (2010), Chandra et al. (2011), Chambers et al. (2012) and López-Vizcaíno
et al. (2013, 2015) applied area-level logit regression models to the estimation of domain counts or proportions. Similarly,
Tzavidis et al. (2015) and Boubeta et al. (2016) applied Poisson regressionmodels for estimating the same type of parameters.
We follow the idea of using Poisson models for estimating counts and we introduce two temporal area-level mixed models.
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The first two Poissonmodels use independent time random effects. The second twomodels assume that time randomeffects
follow an autoregressive process of order one. The four models are fitted by the moments-based (MB) method introduced
by Jiang (1998) for GLMM.

We derive empirical best predictors (EBP), based on the introduced temporal area-level Poisson mixed models, for
estimating counts and proportions. The statistical methodology is taken and adapted from Jiang and Lahiri (2001) and Jiang
(2003). In addition to the EBP, a plug-in predictor is given and empirically studied in simulation experiments. For estimating
the EBP mean squared error (MSE), we consider the parametric bootstrap MSE estimator introduced by González-Manteiga
et al. (2007, 2008a) in the context of logistic and normal mixed models and later extended by González-Manteiga et al.
(2008b) to a multivariate area-level model. We present an application of the developed methodology to data from the
2010–2013 SLCS of Galicia. The target of the application is the estimation of poverty proportions at county level by sex.

The paper is organized as follows. Section 2 introduces four area-level Poisson mixed models and the employed model-
based fitting algorithm. Section 3 presents the EBP and the plug-in predictors of functions of fixed and small area specific
random effects. Section 4 presents two simulation experiments. The first simulation studies the behavior of the MB fitting
algorithm. The second simulation compares the performances of the EBP and the plug-in predictors. Section 5 applies the
developed methodology to data from the 2010–2013 SLCS of Galicia. The target is the estimation of poverty proportions at
county level by sex. Section 6 gives some conclusions. Appendix contains detailedmathematical derivations for implement-
ing the MB algorithms.

2. The models

This section introduces four area-level Poisson mixed models with time effects and their fitting algorithms. The first
two models (Models 1 and 12) have independent time random effects. The random effects of the second models (Models 2
and 22) follow an AR(1) autoregressive process within each domain. Along this paper, D and T denote the total numbers of
domains and time instants respectively. The corresponding indexes are d and t , where d = 1, . . . ,D and t = 1, . . . , T .

2.1. Models with independent time effects

This section introduces two temporal models with independent time effects. Both models assume that the temporal
correlation of the target variable is fully described by the auxiliary variables. Model 1 considers two independent sets of
random effects such that {v1,d : d = 1, . . . ,D} and {v2,dt : d = 1, . . . ,D, t = 1, . . . , T } are i.i.d. N(0, 1). They denote
the area and the interaction area-time effects that are not explained by the fixed part of the model. The distribution of the
target variable ydt , conditioned to the random effects v1,d and v2,dt , is

ydt |v1,d, v2,dt ∼ Poisson(µdt), d = 1, . . . ,D, t = 1, . . . , T . (1)

Given the relationship between Poisson and binomial distributions, we take µdt = νdtpdt , where νdt and pdt are size and
probability parameters respectively. In practice, νdt is known and equal to the sample size of domain d at time instant t .
For the natural parameter, we assume that it can be expressed in terms of a set of auxiliary variables through a regression
model, i.e.

Model 1: logµdt = log νdt + xdtβ + φ1v1,d + φ2v2,dt , d = 1, . . . ,D, t = 1, . . . , T , (2)

where β = col1≤k≤p(βk) is the column vector of regression coefficients, xdt = col′1≤k≤p(xdtk) is the row vector of auxiliary
variables and φ1 and φ2 are the variance component parameters. If we define u1,d = φ1v1,d and u2,dt = φ2v2,dt , then φ1 and
φ2 are the variances of u1,d and u2,dt respectively. These variances can be interpreted as the variability between domain and
between time periods within each domain respectively.

Further, we assume that the ydt ’s are independent conditioned to v1 = col1≤d≤D(v1,d) and v2 = col1≤d≤D(v2,d), where
v2,d = col1≤t≤T (v2,dt). We have that

P (ydt |v1, v2) = P(ydt |v1,d, v2,dt) =
1

ydt !
exp{−νdtpdt}ν

ydt
dt pydtdt ,

where pdt = exp{xdtβ + φ1v1,d + φ2v2,dt}. For fitting the area-level Poisson mixed model with independent time effects,
we use the MB algorithm based on the method of simulated moments suggested by Jiang (1998). A natural set of equations
for applying this method is
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