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h i g h l i g h t s

• An adaptive penalized splines model for data smoothing is proposed.
• The model is locally adaptive to the inhomogeneity of observations.
• Local penalization is constructed without complicated pre-estimation.
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a b s t r a c t

Data driven adaptive penalized splines are considered via the principle of constrained re-
gression. A locally penalized vector based on the local ranges of the data is generated and
added into the penalty matrix of the classical penalized splines, which remarkably im-
proves the local adaptivity of the model for data heterogeneity. The algorithm complexity
and simulations are studied. The results show that the adaptive penalized splines outper-
form the smoothing splines, l1 trend filtering and classical penalized splines in estimating
functions with inhomogeneous smoothness.
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1. Introduction

Several non- or semi-parametric regression methods have been developed in recent years, including classical methods,
such as kernels, local polynomials, smoothing splines, sieves andwavelets, and relative newcomers such as l1 trend filtering,
lasso, and generalized lasso (Wahba, 1990; Green and Silverman, 1994; Fan and Gijbels, 1996; Eubank, 1999; Ruppert et al.,
2003; Hastie et al., 2001). The principle of maximizing likelihood functions under some constraints is obeyed in certain
regressionmethods, e.g., smoothing splines, penalized splines, lk trend filtering and generalized lasso, where themodels are
commonly designed as

yi = f (xi) + ϵi.

With given observations (xi, yi), the design x is arranged such that xi 6 xi+1, i = 1, . . . , n. The regression function to be
estimated is f (x), and the error ϵi is generally assumed to be independent and identically subject to a Gaussian distribution
with mean 0 and variance σ 2. Once f (x) is represented by a linear combination of basis functions Bj(x) as

p
j=1 Bj(x)βj, the
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estimate is defined by a penalized least-square optimization problem:

β̂ = arg min
β∈Rp

{∥Y − Xβ∥
2
2 + λ penalty(β)}, (1)

where Y = (y1, . . . , yn)′, β = (β1, . . . , βp)
′, the design matrix X is generated by X(i, j) = Bj(xi), ∥ · ∥2 is the Euclid norm,

λ is a tuning parameter, and penalty(β) is a positive convex function of β.
Constrained regression based on splines or piecewise polynomials is applied in some popular methods. First, several

types of spline bases are used for Bj(x) such as the truncated power basis (Ruppert, 2002), the B-spline basis (De Boor, 1978;
Eilers andMarx, 1996), the natural spline basis (Wahba, 1990) and other piecewise polynomial bases (Tibshirani et al., 2014).
Second, several types of penalties are used, such as smoothing splines with


f ′′(x)2dx (Wahba, 1990; Gu, 2002), penalized

splines with ∥D(k)β∥
2
2 (O’Sullivan, 1988; Eilers and Marx, 1996), l1 trend filtering with ∥D(1)β∥1, where D(k) is the difference

matrix of order k (Kim et al., 2009), and generalized lasso based on splines (Bazerque et al., 2011; Lin and Zhang, 2006) with
∥Dβ∥1, whereD is a particular matrix (Tibshirani and Taylor, 2011). Intuitively, the first term in target function (1) measures
the estimator’s loss, and the second term denotes the estimator’s undesirable characters; the weight λ controls the trade-off
between the first and second terms. It can also be said that the target function maintains the balance between the goodness
of fit and the degrees of freedom of the model.

Adaptability strongly influences model efficiency. Therefore, how to improve this aspect using a well-designed model
is an interesting research topic in nonparametric regression analysis. Adaptive spline smoothing is developed in several
methods. Generally, the first method focuses on the selection of knots (Friedman, 1991; Mammen et al., 1997; Zhou and
Shen, 2001; Ruppert, 2002). These procedures always require complex computations to determine the number and positions
of knots. The secondmethod focuses on the construction of penalties (Ruppert and Carroll, 2000; Jullion and Lambert, 2007;
Pintore et al., 2006; Liu and Guo, 2010; Storlie et al., 2010; Jang and Oh, 2011; Wang et al., 2013). In these procedures, the
idea of generalizing the total penalty parameter λ from a constant to a function λ(·) plays the key role, and the function
λ(·) is always pre-estimated by some elaborate techniques. Furthermore, Bayesian adaptive penalized splines have also
been studied in some works. Baladandayuthapani et al. (2005) and Jullion and Lambert (2007) give heteroscedastic prior
distributions for the penalty parameters, whereas Lang and Brezger (2004), Scheipl and Kneib (2009), Krivobokova et al.
(2008) and Crainiceanu et al. (2007) give heteroscedastic prior distributions for the regression parameters. The estimates
are normally obtained by Markov chain Monte Carlo (MCMC) or restricted maximum likelihood (REML). Krivobokova et al.
(2008) further developed a fast and simple algorithm for the Bayesian P-splines based on Laplace approximation of the
marginal likelihood.

In particular, Tibshirani et al. (2014) present a detailed study on l1 trend filtering (Kim et al., 2009) and compare it with
smoothing splines (Wahba, 1990) and locally adaptive regression splines (Mammen et al., 1997). The trend filtering has sim-
ilar adaptability as the locally adaptive regression splines but outperforms the smoothing splines in estimating functions
with inhomogeneous smoothness. However, greater local adaptivity appears necessary in certain cases, such as Fig. 1, where
theMexican hat function and its scatter points with random errors and l1 trend filtering fittingwith 15, 20, and 40 degrees of
freedom are shown. Clearly, with more degrees of freedom, the cusp of the hat becomes well fitted; however, the flat part is
over-fitted with more wiggles. With fewer degrees of freedom, the flat part is well fitted; however, the cusp is under-fitted.

Most of the aforementioned adaptive splines are based on smoothing splines and not penalized splines (Eilers andMarx,
1996; Ruppert et al., 2003), and complicated pre-computations are always required. In this paper, a new method called
adaptive penalized splines is provided based on the classical penalized splines. The procedure only adds a weight vector
to the differences in coefficients, the weight vector is fully data driven and does not need to be pre-estimated. Solving
of the model is a simple quadratic convex optimization problem as generalized ridge regression. Empirical results and
simulations show that this new method can remarkably improve the local adaptivity of the model compared to l1 trend
filtering, smoothing splines and classical penalized splines. The remainder of this paper is organized as follows: Section 2
constructs the adaptive penalized splines and the computation of the nonparametric estimator is considered in Section 3; a
simulation study for comparing the adaptive penalized splines, l1 trend filtering, smoothing splines and classical penalized
splines is presented in Section 4; an application is shown in Section 5; and Section 6 contains some discussion.

2. Adaptive penalized splines

First, we provide a short review on classical penalized splines, i.e., P-splines, which was first named in Eilers and Marx
(1996) but can be traced back to O’Sullivan (1988), where X is constructed using a l-degree B-spline basis and penalty(β) is
equal to ∥D(k)β∥

2
2. Then, (1) is equivalently written as

β̂ = arg min
β∈Rp

 n
i=1


yi −

p
j=1

Bj(xi)βj

2

+ λ

p
j=k+1

(△k βj)
2

 , (2)

where △
k denotes the kth-order difference operator as △

1 βj = βj − βj−1 and △
k

= △(△k−1). In the case of k = 2, the
P-splines can be considered as the discrete version of smoothing splines. Additional details about P-splines can be found in
Eubank (1999), Green and Silverman (1994) and Ramsay and Silverman (2005), etc.
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