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a b s t r a c t

Generalized estimating equations (GEE) proposed by Liang and Zeger (1986) yield
a consistent estimator for the regression parameter without correctly specifying the
correlation structure of the repeatedly measured outcomes. It is well known that the
efficiency of regression coefficient estimator increases with correctly specified working
correlation and thus unstructured correlation could be a good candidate. However, lack
of positive-definiteness of the estimated correlation matrix in unbalanced case causes
practitioners to choose independent, autoregressive or exchangeable matrices as working
correlation structure. Our goal is to broaden practical choices of working correlation
structure to unstructured correlation matrix or any other matrices by proposing a GEE
with a stabilized working correlation matrix via linear shrinkage method in which the
minimum eigenvalue is forced to be bounded below by a small positive number. We
show that the resulting regression estimator of GEE is asymptotically equivalent to that
of the original GEE. Simulation studies show that the proposed modification can stabilize
the variance of the GEE regression estimator with unstructured working correlation, and
improve efficiency over popular choices ofworking correlation. Two real data examples are
presented where the standard error of the regression coefficient estimator can be reduced
using the proposed method.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction 1

Generalized estimating equations (GEE) proposed by Liang and Zeger (1986) have been a popular analytic tool for 2

correlated data. A consistent estimator for the regression parameter can be achieved without correctly specifying the 3

correlation structure of the repeatedly measured outcomes. However, the efficiency of regression coefficient estimator 4

increases if the working correlation matrix is close to the true one (Albert and McShane, 1995). Structured working 5

correlations such as independent, autoregressive and exchangeable are available from built-in functions from software. 6

These choices give a manageable number of parameters in the correlation matrix, and can be helpful when the sample size 7

is small and the number of time points is large. To select a working correlation matrix from various choices, criteria such
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as the ‘quasi-likelihood under the independence model criterion’ (Pan, 2001) and the ‘correlation information criterion’1

(Hin and Wang, 2009) have been proposed among others (Carey and Wang, 2011; Gosho et al., 2011; Zhou et al., 2012;2

Westgate, 2013, 2014). The unstructured working correlation matrix can correctly model the correlation structure and is3

available from built-in functions from software, but the number of unknown parameters increases as the number of time4

points. When the sample size is small relative to the number of time points, variability of many nuisance parameters in the5

unstructured correlation matrix affects the variance of the regression parameter estimators, andWestgate (2013) proposed6

amethod to address this problem. However, when themaximumof numbers of time points is fixed, the asymptotic variance7

of the regression coefficient estimator is unaffected by the variance of the correlation estimator, and reducing the number of8

parameters does not lead to gain in asymptotic efficiency of the regression coefficient estimator. Misspecification ofworking9

correlation could not only lead to loss of efficiency, but more seriously, could lead to infeasibility of the GEE solutions (Qu10

et al., 2008; Wang and Carey, 2004). Despite these shortcomings, choosing aforementioned structured working correlation11

matrix guarantees the correlation matrix to be positive definite. The estimated unstructured correlation matrix sometimes12

fails to be positive definite due to varying numbers of subunits, in which case the GEE estimates are not defined. Even when13

the estimated unstructured matrix is positive definite, if the minimum eigenvalue is small, the coefficient estimate can be14

unstable and the standard error of regression parameter estimates can be large (Vens and Ziegler, 2012). If lack of positive15

definiteness can be solved, the unstructured working correlation matrix can be an attractive choice since it improves the16

asymptotic variance of the regression coefficient estimator.17

Many researchers have worked on solving lack of positive-definiteness of the sample covariance matrix mainly by18

replacing the eigenvalues of sample covariance matrix by their linear or nonlinear transforms (Stein, 1956; Haff, 1991;19

Daniels and Kass, 1999, 2001; Ledoit andWolf, 2004; Schäfer and Strimmer, 2005; Ledoit andWolf, 2012; Won et al., 2013;20

Lam, 2016). In a regression settingwith longitudinal data, Daniels and Kass (2001) obtained stabilized regression coefficients21

estimators by placing a normally-distributed prior to the logarithm of the sample eigenvalues. This method requires that22

the eigenvalues of the sample covariance matrix are positive.23

Our goal is to broaden practical choices of working correlation structure to unstructured correlationmatrix by alleviating24

problems due to lack of positive definiteness. To achieve this goal we propose to modify working correlation matrix by25

linear shrinkagemethod proposed by Choi (2015). We show that the resulting regression estimator of GEE is asymptotically26

equivalent to that of the original GEE. Simulation studies show that the proposedmodification has advantages in caseswhere27

the minimum eigenvalue of the estimated working correlation structure is small. Two real data examples are presented28

where the standard error of the regression coefficient estimator is reduced using the proposed method.29

2. Basic notations30

We denote the ni × 1 vector of the outcomes and the ni × p matrix of covariates for the ith subject (i = 1, . . . , K) by31

yi = (yi1, yi2, . . . , yini)
T and Xi = (xi1, xi2, . . . , xini)

T , respectively. We assume that the first two moments of yij are given by32

E(yij | xij) = µij = g(ηij) = g(xTijβ), and Var(yij | xij) = φa(µij),33

where β is a p × 1 regression parameter, and g−1(·) is a link function. The true ni × ni covariance matrix of yi given34

Xi, Var(yi | Xi) is denoted by �i. Let the maximum of ni be q, and assume that q is bounded. The working correlation35

matrix for q repeated outcomes is denoted by R(α), where α is an s × 1 vector fully characterizing R(α). When the36

working correlation matrix is unstructured, α can be q2 × 1 vectorized elements of R(α). We denote by Ri(α) the ith37

sub-matrix of R(α) extracted according to the corresponding indices, and write 6i(β, α) = A(µi)
1/2Ri(α)A(µi)

1/2, where38

µi = (µi1, µi2, . . . , µini)
T , and A(µi) is a diagonal matrix with a(µij) as the jth diagonal element. Assume that we have α̂39

and α0 that satisfy K 1/2(α̂ − α0) = Op(1). The limit of α̂, α0, is determined by the value that satisfies the expectation of the40

estimating function for α being zero. When the true and specified correlation structures are different, α0 could be different41

depending on the estimating function for α, which leads to different asymptotic relative efficiency (Wang and Carey, 2003).42

A lack of definition of α0 whenworking correlation is different from the true correlation is discussed in Crowder (1995). The43

GEE estimator β̂ of β is obtained by solving GEE,44

U{β, α̂(β)} =

K
i=1

Ui{β, α̂(β)} =

K
i=1

DT
i 6i{β, α̂(β)}−1(yi − µi) = 0,45

where Di = ∂µi/∂βT . Let W0(β, α) = E(−K−1∂U/∂βT ), Var{K−
1
2 U(β, α)} be W1(β, α), where W1(β0, α) =46

E

K−1K

i=1 D
T
i 6i{β, α̂(β)}−1(yi−µi)(yi−µi)

T6i{β, α̂(β)}−1Di

. Notation α̂(β) emphasizes that α̂ is a function ofβ. Under47

some conditions, K
1
2 (β̂−β0) is shown to be asymptotically normal withmean 0 and varianceW−1

0 W1W−1
0 (Liang and Zeger,48

1986).49

3. Motivation50

To motivate the proposed method, we first quantify the loss of the asymptotic relative efficiency (ARE) by limiting51

the choice of working correlation structure to exchangeable and autoregressive of order 1 (AR-1). This quantification52
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